

1	a)	Complete the following table about protons, neutrons and electrons.	
---	----	---	--

	neutron	proton	electron
relative charge	0	+1	-1
relative mass	1	1	0.0005

b) Define the term mass number. Number of protons + neutrons

c) Define the term atomic number Number of protons

2 Complete the following table about some atoms and ions. The first row has been done for you.

Particle	Atom or ion	Atomic number	Mass number	Number of protons	Number of neutrons	Number of electrons	Electron structure
¹⁹ ₉ F ⁻	ion	9	19	9	10	10	2,8
⁴⁰ ₁₈ Ar	atom	18	40	18	22	18	2,8,8
$^{27}_{13}\text{Al}^{3+}$	ion	13	27	13	14	10	2,8
$^{34}_{16}S^{2-}$	ion	16	34	16	18	18	2,8,8
³⁹ ₁₉ K ⁺	ion	19	39	19	20	18	2,8,8
³¹ ₁₅ P	atom	15	31	15	16	15	2,8,5

- **3** The element indium consists of two isotopes. 4.3% of the atoms are $\frac{113}{49}$ In and 95.7% of the atoms are $\frac{115}{49}$ In.
 - a) What makes both of these atoms of the element indium? have 49 protons
 - b) What are isotopes atoms with the same number of protons but different number of neutrons
 - c) Calculate the relative atomic mass of indium. Give your answer to 4 significant figures.

<u>(113 x 4.3) + (115 x 95.7)</u> = 114.9 4.3 + 95.7

- **4** The diameter of an indium atom is 310 pm.
 - a) What is the diameter of an indium atom in metres? Give your answer in standard form.

 $310 \times 10^{-12} \text{ m} = 3.10 \times 10^{-10} \text{ m}.$

b) How many indium atoms would fit in a line 20 cm long? Give your answer to 3 significant figures.

$$0.20 = 6.45 \times 10^8$$
 atoms
3.10 x 10⁻¹⁰

- **5** This question is about the Periodic Table
 - a) Name each of the following groups.

Group 1 alkali metals

Group 7 halogens

Group 0 noble gases

- b) Which group would the following elements be in?
 element with electron structure 2,8,6 group 6
 element with electron structure 2,8,8 group 0
 element with electron structure 2,8,18,3 group 3
- **<u>6</u>** Balance each of the following equations.
 - a) 4K + O₂ \rightarrow 2K₂O
 - b) CaCO₃ + 2HCl \rightarrow CaCl₂ + H₂O + CO₂
 - c) C_3H_8 + 5 $O_2 \rightarrow 3CO_2 + 4H_2O$

Area	Strength	To develop	Area	Strength	To develop	Area	Strength	To develop
Done with care and thoroughness			Can find PNE numbers in ions			Can use standard form		
Good SPG			Knows what determines an element			Can convert units		
Knows mass and charge of PNE			Knows what isotopes are			Can name common PT groups		
Can define atomic & mass numbers			Find A _r from isotope data			Determine group from electron structure		
Can find PNE numbers in atoms			Can use sig figs			Balance equations		

Atoms, ions, equations, Periodic Table

1 Complete the following table about some atoms and ions. The first row has been done for you.

Particle	Atom or ion	Atomic number	Mass number	Number of protons	Number of neutrons	Number of electrons	Electron structure
¹⁹ ₉ F ⁻	ion	9	19	9	10	10	2,8
³⁷ ₁₇ Cl	atom	17	37	17	20	17	2,8,7
³² ₁₆ S ²⁻	ion	16	32	16	16	18	2,8,8
²¹ ₁₀ Ne	atom	10	21	10	11	10	2,8
³⁹ ₁₉ K ⁺	ion	19	39	19	20	18	2,8,8
¹⁶ / ₈ 0 ²⁻	ion	8	16	8	8	10	2,8

- **2** The element chromium consists of four isotopes. 4.3% of the atoms are ${}^{50}_{24}$ Cr, 83.8% of the atoms are ${}^{52}_{24}$ Cr, 9.5% of the atoms are ${}^{53}_{24}$ Cr and 2.4% of the atoms are ${}^{54}_{24}$ Cr.
 - a) What are isotopes? Atoms with the same number of protons but a different number of neutrons
 - b) What makes each of these atoms of the element chromium? they have 24 protons
 - c) Calculate the relative atomic mass of chromium. Give your answer to 3 significant figures.

 $\frac{[4.3 \times 50] + [83.8 \times 52] + [9.5 \times 53] + [2.4 \times 54]}{4.3 + 83.8 + 9.5 + 2.4} = 52.1$

d) The diameter of a chromium atom is 256 pm. State this in metres in standard form.

 $256 \times 10^{-12} = 2.56 \times 10^{-10} m$

e) The nucleus of a chromium atom is about 10000 times smaller than the atom. Calculate the diameter of the nucleus in metres in standard form.

 $\frac{2.56 \times 10^{-10}}{10000} = 2.56 \times 10^{-14} \text{ m}$

- **3** Balance each of the following equations.
 - a) Ca + $2HNO_3 \rightarrow Ca(NO_3)_2 + H_2$
 - b) $2C_6H_{14}$ + $19O_2 \rightarrow 12CO_2$ + $14H_2O$

<u>4</u> In each of the following reactions, predict whether electrons will be (1) shared, (2) transferred or (3) no reaction takes place. Place a \checkmark in the correct box.

elements	electrons shared	electrons transferred	no reaction
sodium + oxygen		✓	
magnesium + copper			✓
phosphorus + chlorine	✓		
argon + fluorine			✓

- **<u>5</u>** This question is about the elements in Group 1 of the Periodic Table.
 - a) i) Describe what you see when lithium burns in oxygen.

Burns with red (crimson) flame & forms white powder

- ii) Write a balanced equation for this reaction. 4Li + $O_2 \rightarrow 2Li_2O$
- b) Which is more reactive, lithium or sodium? Explain why.

Sodium more reactive
Sodium atoms are bigger so outer shell electron is further from nucleus
Weaker attraction between nucleus and outer electron in sodium
So outer electron lost more easily in sodium

- **6** This question is about the elements in Group 7 of the Periodic Table.
 - a) Describe what you see when a solution of sodium bromide is mixed with a solution of chlorine.

Yellow solution forms

- b) Write a balanced equation for this reaction. Cl₂ + 2NaBr \rightarrow 2NaCl + Br₂
- c) Explain fully why this reaction takes place.

chlorine more reactive than bromine chlorine atoms are smaller so the electron gained is closer to the nucleus stronger attraction between nucleus and electron gained in chlorine so chlorine gains electron more easily

Area	Strength	To develop	Area	Strength	To develop	Area	Strength	To develop
Done with care and thoroughness			Find A _r from isotope data			What happens when Li reacts with O ₂		
Good SPG			Can use sig figs			Write equation when Li reacts with O ₂		
Can find PNE numbers in atoms			Can use standard form			Know & explain Group 1 reactivity trend		
Can find PNE numbers in ions			Can convert units			What happens in halogen displacements		
Knows what determines an element			Balance equations			Write halogen displacement reactions		
Knows what isotopes are			What happens when elements react			Know & explain Group 7 reactivity trend		

1 Complete the following table about some atoms and ions. The first row has been done for you.

Particle	Atom or ion	Atomic number	Mass number	Number of protons	Number of neutrons	Number of electrons	Electron structure
¹⁹ ₉ F ⁻	ion	9	19	9	10	10	2,8
40 ₁₉ K ⁺	ion	19	40	19	21	18	2,8,8
²⁷ ₁₃ Al	atom	13	27	13	14	13	2,8,3
$^{14}_{7}N^{3-}$	ion	7	14	7	7	10	2,8

- **2** The element magnesium consists of three isotopes. 79.0% of the atoms are ${}^{24}_{12}Mg$, 10.0% of the atoms are ${}^{25}_{12}Mg$, and 11.0% of the atoms are ${}^{26}_{12}Mg$
 - a) What makes each of these atoms of the element magnesium? they have 12 protons
 - b) What are isotopes? they have same number of protons, but a different number of neutrons
 - c) Calculate the relative atomic mass of magnesium. Give your answer to 3 significant figures.

 $\frac{[79.0 \times 24] + [10.0 \times 25] + [11.0 \times 26]}{79.0 + 10.0 + 11.0} = 24.3$

- d) The diameter of a magnesium atom is 0.15 nm. State this in metres in standard form. **1.5 x 10⁻¹⁰ m**
- e) How many atoms of magnesium would fit in a line 50 cm long? Give your answer to 3 significant figures.

$\frac{0.50}{1.5 \times 10^{-10}} = 3.33 \times 10^{9}$

- **3** This question is about some non-metals in the Periodic Table.
 - a) Describe what you see when a solution of sodium iodide is mixed with a solution of chlorine.

brown solution

b) Explain fully why this reaction takes place.

chlorine more reactive than iodine chlorine atoms are smaller so the electron gained is closer to the nucleus stronger attraction between nucleus and electron gained in chlorine so chlorine gains electron more easily

- c) Argon is in Group 0 of the Periodic Table.
 - i) Name this group. noble gases
 - ii) Explain why argon is unreactive. stable electron structure

- 4 This question is about some metals in the Periodic Table.
 - a) i) Describe what you see when potassium reacts with water.

K melts, floats, moves on water, fizzes, lilac flame

- ii) Write a balanced equation for this reaction. $2K + 2H_2O \rightarrow 2KOH + H_2$
- b) Which is more reactive, potassium or sodium? Explain why.

K more reactive K atoms are bigger so outer shell electron is further from nucleus Weaker attraction between nucleus and outer electron in sodium So outer electron lost more easily in sodium

c) Copper is a transition metal. Give three similarities and three differences between copper and potassium.

Similarities	Differences
 metals conduct heat, electricity react with non-metals to form ionic compounds 	 Cu forms more than one ion, K does not Cu has high mpt, K does not Cu has high density, K does not Cu forms coloured compounds, K does not K very reactive, Cu is not

- **5** Balance each of the following equations.
 - a) Al(NO₃)₃ + 3NaOH \rightarrow 3NaNO₃ + Al(OH)₃
 - b) C_4H_8 + 6 $O_2 \rightarrow 4CO_2$ + 4 H_2O

Area	Strength	To develop	Area	Strength	To develop	Area	Strength	To develop
Done with care and thoroughness			Can use sig figs			What happens when K reacts with H ₂ O		
Good SPG			Can use standard form			Write equation when K reacts with H ₂ O		
Can find PNE numbers in atoms			Can convert units			Know & explain Group 1 reactivity trend		
Can find PNE numbers in ions			What happens in halogen displacements			Compare Gp 1 to transition metals		
Knows what determines an element			Know & explain Group 7 reactivity trend			Balance equations		
Knows what isotopes are			Name common groups in PT					
Find A _r from isotope data			Explain inert nature of argon					

Atoms, ions, equations, Periodic Table, mixtures

- Atomic Mass Number of Number of Number of Electron Particle Atom or ion number number protons neutrons electrons structure 22 41 19K atom 19 41 19 19 2,8,8,1 $^{27}_{13}Al^{3+}$ ion 13 27 13 14 10 2,8 ${}^{16}_{8}0^{2-}$ 8 8 10 ion 8 16 2,8
- **1** Complete the following table about some atoms and ions.

2 a) The element potassium consists of two isotopes. 93.3% of the atoms are ³⁹/₁₉K and the rest of the atoms are ⁴¹/₁₉K. Calculate the relative atomic mass of potassium. Give your answer to 3 significant figures.

$\frac{[93.3 \times 39] + [6.7 \times 41]}{100} = 39.1$

- b) The diameter of a potassium atom is 440 pm. State this in metres in standard form. **4.4 x 10⁻¹⁰ m**
- **3** a) i) Describe what you see when sodium burns in oxygen. **Orange-yellow flame, white powder forms**
 - ii) Write a balanced equation for this reaction. $4Na + O_2 \rightarrow 2Na_2O$
 - iii) Sodium oxide is formed in this reaction. Explain why this sodium oxide has a high melting point.

Sodium oxide ionic Strong attraction between positive and negative ions

b) Potassium is more reactive then sodium. Explain why.

K more reactive

K atoms are bigger so outer shell electron is further from nucleus Weaker attraction between nucleus and outer electron in potassium So outer electron lost more easily in potassium

- **4** Iron is a transition metal. Give three ways in which transition metals are different to the Group 1 (alkali metals).
 - TM forms more than one ion, Gp1 does not
 - TM has high mpt, Gp1 does not
 - TM has high density, Gp1 does not
 - TM forms coloured compounds, Gp1 does not
 - Gp1 very reactive, TM is not

- **5** a) Chlorine is a gas at room temperature made of molecules. The boiling point of chlorine is -34° C.
 - i) Give the formula of chlorine molecules. Cl₂
 - ii) Explain why chlorine has a low boiling point. Weak forces between molecules
 - b) Which is more reactive, chlorine or bromine. Explain your answer.

chlorine more reactive than bromine chlorine atoms are smaller so the electron gained is closer to the nucleus stronger attraction between nucleus and electron gained in chlorine so chlorine gains electron more easily

- c) Complete the following equations. Write no reaction if there is no reaction.
 - i) chlorine + sodium fluoride \rightarrow no reaction
 - ii) bromine + potassium iodide \rightarrow potassium bromide + iodine
- **<u>6</u>** Dimitri Mendeleev is known as the "father of the Periodic Table". What did Mendeleev do in terms of the Periodic Table and why were his ideas accepted?

put elements in order of mass with elements with similar properties in same group but did switch around a few elements if it fitted the Group better left gaps for undiscovered elements predicted properties of undiscovered elements elements were discovered with those properties

- 7 What method would you use to separate each of the following mixtures?
 - a) water from a solution of salt in water distillation
 - b) octane from a mixture of pentane and octane (they are miscible liquids) fractional distillation
 - c) sodium nitrate from a solution of sodium nitrate in water evaporation / crystallisation
 - d) petrol from a mixture of petrol and water (they are immiscible liquids) separating funnel
 - e) calcium carbonate from a mixture with water (CaCO₃ is insoluble in water) filtration

Area	Strength	To develop	Area	Strength	To develop	Area	Strength	To develop
Done with care and thoroughness			Can use standard form			Understand term diatomic		
Good SPG			Can convert units			Why molecular substances have low mpt		
Can find PNE numbers in atoms			What happens when Na reacts with O ₂			Know & explain Group 7 reactivity trend		
Can find PNE numbers in ions			Write equation when Na reacts with O ₂			What happens in halogen displacements		
Find A _r from isotope data			Why ionic substances have high mpt			Why Mendeleev's ideas were accepted		
Can use sig figs			Know & explain Group 1 reactivity trend			Can give methods to separate mixtures		

GCSE REVISION 6

Formulae, equations, particles, structure & bonding

- **1** Write the formula of the following ionic compounds.
 - a) sodium sulfate Na_2SO_4 c) ammonium bromide NH_4Br b) iron(III) oxide Fe_2O_3 d) aluminium nitrate $Al(NO_3)_3$
- **2** Write balanced equations for the following equations.
 - a) Na + $O_2 \rightarrow Na_2O$ 4Na + $O_2 \rightarrow 2Na_2O$
 - b) magnesium + nitric acid \rightarrow magnesium nitrate + hydrogen

 $Mg + 2HNO_3 \rightarrow Mg(NO_3)_2 + H_2$

<u>3</u> Complete the following table about some atoms and ions. The first row has been done for you.

Particle	Atom or ion	Atomic number	Mass number	Number of protons	Number of neutrons	Number of electrons	Electron structure
¹⁹ ₉ F ⁻	ion	9	19	9	10	10	2,8
$^{27}_{13}\text{Al}^{3+}$	ion	13	27	13	14	10	2,8
³⁹ 19K	atom	19	39	19	20	19	2,8,8,1
³⁴ ₁₆ S ²⁻	ion	16	34	16	18	18	2,8,8

<u>4</u> What is the structure type of each of the following substances. Tick the correct box.

name	aluminium oxide	potassium	sulfur dioxide	graphite	buckminster -fullerene	helium	calcium bromide	sucrose
formula	Al_2O_3	К	SO ₂	С	C ₆₀	He	CaBr ₂	$C_{12}H_{22}O_{11}$
giant covalent				√				
ionic	✓						✓	
metallic		✓						
molecular			✓		✓			✓
monatomic						✓		

5 Oxygen is a molecular substance containing O₂ molecules. Explain why oxygen has a very low boiling point (-183°C).

weak forces between molecules

6 Diamond and graphite are both forms of carbon. They both have very high melting points but only graphite conducts electricity. Explain these properties by discussing the structure and bonding in each substance.

both are giant covalent so high melting points as need to break covalent bonds graphite conducts as it has delocalised electrons that can move along layers to carry charge diamond has no delocalised electrons

7 Carbon dioxide (CO_2) and silicon dioxide (SiO_2) are both oxides of Group 4 elements. Carbon dioxide has a very low boiling point $(-78^{\circ}C)$ while silicon dioxide has a very high melting point $(1600^{\circ}C)$. Explain this difference by discussing structure and bonding in each substance.

 CO_2 is molecular weak forces between molecules SiO₂ is giant covalent high melting point as need to break covalent bonds

8 Aluminium metal is extracted from aluminium oxide by electrolysis. The aluminium oxide must be molten to conduct and melts at 2072°C. Explain, by discussing structure and bonding, why aluminium oxide must be molten to conduct and why it has a high melting point.

must be molten to conduct so ions can move to carry charge through it high melting point as strong attraction between positive and negative ions

Area	Strength	To develop	Area	Strength	To develop	Area	Strength	To develop
Done with care and thoroughness			Can find PNE numbers in atoms			Why giant covalent have high mpt		
Good SPG			Can find PNE numbers in ions			Why giant covalent conduct or not		
Write formulae			Identify structure type from formula			Why ionic have high mpt		
Write balanced equations			Why molecular substance has low mpt			Why ionic conduct or not		

1 Give the formula of the following ionic substances.

- a) potassium oxide K_2O
- b) aluminium bromide AlBr₃
- c) iron(III) sulfide Fe₂S₃

- d) magnesium hydroxide Mg(OH)₂
 e) ammonium iodide NH₄I
 f) calcium nitrate Ca(NO₃)₂
- 2 Calculate the relative formula mass of the following substances.
 - a) chlorine, Cl₂ 2(35.5) = 71
 - b) ammonium sulfate, $(NH_4)_2SO_4$ 2(14) + 8(1) + 32 + 4(16) = 132
- a) What mass of sodium reacts with 95 g of titanium chloride?

 $TiCl_4$ + 4Na \rightarrow Ti + 4NaCl

mol TiCl₄ = $\frac{95}{190}$ = 0.50 mol mol Na = 4 x 0.50 = 2.0 mol mass Na = 23 x 2.0 = 46 g

b) Calculate the percentage atom economy to make titanium in this reaction.

% atom economy = 100 x $\frac{48}{190+4(23)}$ = 17.0%

4 Ammonia is made by reaction of nitrogen with hydrogen.

 $N_2 \ + \ 3H_2 \ \rightarrow \ 2NH_3$

a) Calculate the maximum mass of ammonia that could be formed from reaction of 12 g of hydrogen reacting with nitrogen.

mol H₂ = $\frac{12}{2}$ = 6.0 mol mol NH₃ = 4.0 mol mass NH₃ = 17 x 4.0 = 68 g

b) In this reaction, only 15 g of ammonia was formed. Calculate the percentage yield.

% yield = 100 x $\frac{15}{68}$ = 22.1%

- c) Suggest two reasons why the yield was less than 100%.
 - reaction is reversible / incomplete
 - some products lost
 - other reactions may take place

In an experiment, 4.0 g of calcium was reacted with 4.0 g of chlorine. One of the chemicals was in excess. Determine which is the limiting reagent and then calculate the mass of calcium chloride formed.

 $\text{Ca} \ \textbf{+} \ \text{Cl}_2 \ \rightarrow \ \text{Ca}\text{Cl}_2$

mol Ca = $\frac{4.0}{40}$ = 0.10 mol mol Cl₂ = $\frac{4.0}{71}$ = 0.056 mol \therefore Ca is in excess and Cl₂ is the limiting reagent \therefore mol CaCl₂ = 0.056 mol \therefore mass CaCl₂ = 111 x 0.056 = 6.25 g

- **6** 25.0 cm³ of a solution of calcium hydroxide was titrated against a solution of 0.100 mol/dm³ hydrochloric acid. 26.3 cm³ of the hydrochloric acid was needed to neutralise the calcium hydroxide.
 - a) Describe how the titration is done.
 - calcium hydroxide measured with pipette
 - into conical flask
 - indicator added
 - acid added from burette
 - until colour changes
 - drop by drop at the end
 - record the result
 - repeat
 - b) Calculate the concentration of the calcium hydroxide in mol/dm³. The equation for the reaction is shown.

 $2HCl + Ca(OH)_2 \rightarrow CaCl_2 + 2H_2O$

mol HCl = 0.100 x $\frac{26.3}{1000}$ = 0.00263 mol mol Ca(OH)₂ = $\frac{1}{2}$ x 0.00263 = 0.001315 mol conc Ca(OH)₂ = $\frac{0.001315}{\frac{25.0}{1000}}$ = 0.0526 mol/dm³

c) Calculate the concentration of the calcium hydroxide in g/dm³.

 $conc Ca(OH)_2 = 0.0526 \times 74 = 3.89 \text{ g/dm}^3$

Area	Strength	To develop	Area	Strength	To develop	Area	Strength	To develop
Done with care and thoroughness			Can work out mass from moles			Work out moles for solutions		
Shows suitable working			Can work out % atom economy			Convert mol/dm ³ to g/dm ³		
Can write ionic formulae			Can work out % yield			Does not round too much		
Can work out <i>M</i> r			Understands why yield < 100%			Can use sig figs		
Work out moles from mass			Understands limiting reagents			Gives units		
Use equation to find reacting moles			Can describe how to do a titration					

5

Atomic structure, structure & bonding, formulae & equations

Particle	Atom or ion	Atomic number	Mass number	Number of protons	Number of neutrons	Number of electrons	Electron structure
²⁷ ₁₃ Al ³⁺	ion	13	27	13	14	10	2,8
¹⁴ ₆ C	atom	6	14	6	8	6	2,4
$^{31}_{15}P^{3-}$	ion	15	31	15	16	18	2,8,8
¹⁸ / ₈ 0 ²⁻	ion	8	18	8	10	10	2,8

1 Complete the following table about some atoms and ions.

- **2** The element indium consists of two isotopes, with 4.3% of the atoms are ${}^{113}_{49}$ In and 95.7% of the atoms are ${}^{115}_{49}$ In.
 - a) What are isotopes? Atoms with the same number of protons but a different number of neutrons
 - b) Calculate the relative atomic mass of indium. Give your answer to 4 significant figures.

 $\frac{[4.3 \times 113] + [95.7 \times 115]}{4.3 + 95.7} = 114.9$

3 Give the formula and structure type of each of the following substances. Tick the correct box.

name	lithium oxide	argon	ammonia	silver(I) nitrate	buckminster- fullerene	diamond
formula	Li ₂ O	Ar	NH ₃	AgNO ₃	C ₆₀	С
giant covalent						✓
ionic	✓			✓		
metallic						
molecular			√		✓	
monatomic		*				

- **<u>4</u>** Balance these equations
 - a) Mg + 2HNO₃ \rightarrow Mg(NO₃)₂ + H₂
 - b) C_4H_8 + $\mathbf{6}O_2 \rightarrow \mathbf{4}CO_2$ + $\mathbf{4}H_2O$
 - c) 2Fe + $3Cl_2 \rightarrow 2FeCl_3$

- **5** Give the formula of the following ionic substances.
 - a) iron(III) oxide Fe₂O₃ c) aluminium nitrate Al(NO₃)₃
 - b) potassium sulfate K₂SO₄ d) barium hydroxide Ba(OH)₂
- **6** Sodium chloride has a high melting point (801°C) while water has a low melting point (0°C). Explain this difference.

NaCI: strong attraction between positive and negative ions ice: weak forces between molecules

7 Aluminium conducts electricity as a solid and when molten. Aluminium oxide does not conduct electricity as a solid but does when molten. Explain this difference.

Al: delocalised electrons can move to carry charge as solid and liquid Al_2O_3 : ions cannot move as solid but can move as liquid to carry the charge

- **8** Nickel reacts with copper(II) sulfate to form copper: Ni + CuSO₄ \rightarrow NiSO₄ + Cu
 - a) Write two half equations for this reaction.

Ni – 2e⁻ \rightarrow Ni²⁺ and Cu²⁺ + 2e⁻ \rightarrow Cu

b) Write an ionic equation for this reaction.

 $Ni + Cu^{2+} \rightarrow Ni^{2+} + Cu$

c) Explain clearly why this is a redox reaction.

both oxidation and reduction take place Ni atoms lose electrons so oxidised, Cu²⁺ ions gain electrons so reduced

d) Nickel displaces copper in this reaction because it is more reactive than copper. Explain, in terms of electrons, why nickel is more reactive than copper.

nickel atoms lose electrons more easily than copper atoms

Area	Strength	To develop	Area	Strength	To develop	Area	Strength	To develop
Done with care and thoroughness			Can find A _r from isotope abundance			Why substances conduct or not		
Good SPG			Write formulae			Write half equations for displacement		
Can find PNE numbers in atoms			Identify structure type from name			Write ionic equation for displacement		
Can find PNE numbers in ions			Write balanced equations			Explain displacement in terms of redox		
Knows what isotopes are			Why substances have high/low mpts					

1 Give the formula of the following ionic substances.

a) aluminium chloride	AICI ₃	d) calcium nitrate	Ca(NO ₃) ₂
b) potassium sulfide	K ₂ S	e) magnesium hydroxide	Mg(OH) ₂
c) sodium sulfate	Na₀SO₄	f) iron(II) oxide	FeO

- 2 Calculate the relative formula mass of the following substances.
 - a) fluorine, F₂ 2(19) = 38
 - b) iron(III) nitrate, Fe(NO₃)₃ 56 + 3(14) + 9(16) = 242
- **3** Calcium oxide is made from the thermal decomposition of calcium carbonate: $CaCO_3 \rightarrow CaO + CO_2$
 - a) Calculate the maximum mass of calcium oxide that could be formed from heating 500 g of calcium carbonate.

moles $CaCO_3 = \frac{500}{100} = 5$ moles CaO = 5 mass CaO = 56 x 5 = 280 g

b) In a reaction, 250 g of calcium oxide was formed from heating 500 g of calcium carbonate. Calculate the percentage yield for this reaction.

% yield = 100 x $\frac{250}{280}$ = 89.3%

- c) Suggest two reasons why the yield was less than 100%.
 - reaction is reversible / incomplete
 - some products lost
 - other reactions may take place
- d) Calculate the atom economy to make calcium oxide from calcium carbonate by this reaction.

% atom economy = $100 \times \frac{56}{100} = 56.0\%$

4 What mass of oxygen reacts with 270 g of aluminium? $4Al + 3O_2 \rightarrow 2Al_2O_3$

moles AI = $\frac{270}{27}$ = 10 moles O₂ = $\frac{3}{4}$ x 10 = 7.5 mass O₂ = 32 x 7.5 = 240 g

- 5 Calculate the volume of the following gases at room temperature and pressure.
 - a) 3 moles of oxygen, O₂

volume $O_2 = 24 \times 3 = 72 \text{ dm}^3$

b) 22 g of carbon dioxide, CO₂

moles $CO_2 = \frac{22}{44} = 0.5$ volume $CO_2 = 24 \times 0.5 = 12 \text{ dm}^3$

6 What volume of hydrogen gas is needed to react with 10 dm³ of nitrogen to make ammonia, with the volume of all gases measured at the same temperature and pressure?

 $N_2 \ + \ 3H_2 \ \rightarrow \ 2NH_3$

volume $H_2 = 10 \times 3 = 30 \text{ dm}^3$

7 5.6 g of iron (Fe) reacts with 24 g of bromine (Br₂) to make a compound containing iron and bromine only. Calculate the moles of iron and bromine and use this to determine the balanced equation for the reaction.

moles Fe = $\frac{5.6}{56}$ = 0.1 moles Br₂ = $\frac{24}{160}$ = 0.15 ratio moles Fe : moles Br₂ = 0.1 : 0.15 = 2 : 3 2Fe + 3Br₂ \rightarrow 2FeBr₃

8 25.0 cm³ of a solution of citric acid, which is represented by H_3T in the equation, reacted with 26.4 cm³ of 0.100 mol dm⁻³ sodium hydroxide solution in a titration.

 H_3T + 3NaOH \rightarrow Na₃T + 3H₂O

a) Calculate the concentration of the citric acid in mol/dm³. Give your answer to 3 significant figures.

mol NaOH = $0.100 \times \frac{26.4}{1000}$ = 0.00264 mol mol H₃T = $\frac{1}{3} \times 0.00264$ = 0.00088 mol conc H₃T = $\frac{0.00088}{\frac{25.0}{1000}}$ = 0.0352 mol/dm³

c) Calculate the concentration of the citric acid in g/dm³. The relative formula mass of citric acid is 226. Give your answer to 3 significant figures.

Strength To develop Strength To develop Strength To develop Area Area Area Done with care and thoroughness Can work out mass from moles Deduce molar reacting ratio from mass Shows suitable working Can work out % atom economy Work out moles for solutions Can write ionic formulae Can work out % yield Convert mol/dm3 to g/dm3 Can work out Mr Does not round too much Understands why yield < 100% Work out moles from mass Work out gas volume from mass or mol Can use sig figs Understands reacting gas volumes Gives units Use equation to find reacting moles

conc $H_3T = 0.0352 \times 226 = 7.96 \text{ g/dm}^3$

- Complete **word** equations for each of the following reactions. Write **no reaction** if no reaction takes place. 1
 - a) copper + oxygen \rightarrow copper oxide
 - b) hydrogen sulfide + oxygen → water + sulfur dioxide
 - c) potassium + water → potassium hydroxide + hydrogen
 - d) calcium carbonate + hydrochloric acid \rightarrow calcium chloride + carbon dioxide + water
 - e) nickel oxide + nitric acid \rightarrow nickel nitrate + water
 - f) magnesium + sulfuric acid → magnesium sulfate + hydrogen
 - g) ammonia + hydrochloric acid -> ammonium chloride
 - h) calcium hydroxide + nitric acid \rightarrow calcium nitrate + water
- 2 Classify each of the following metals as having high / medium / low reactivity.

a)	silver	low	C)	iron	medium	c)	lithium	high
b)	magnesium	high	d)	zinc	medium	e)	copper	low

Complete the table about the following reactions by ticking the correct boxes. 3

aquetion	trans	fer of	type of reaction		
equation	protons	electrons	redox	acid-base	
$Ca + 2HCl \rightarrow CaCl_2 + H_2$		×	√		
Fe_2O_3 + 3C \rightarrow 2Fe + 3CO		✓	✓		
$MgO + H_2SO_4 \rightarrow MgSO_4 + H_2O$	√			✓	
$Zn + CuSO_4 \rightarrow ZnSO_4 + Cu$		~	V		

a) Complete the table to show the products of the electrolysis of the following compounds. 4

compound	state	product at positive electrode	product at negative electrode
potassium bromide	molten	bromine	potassium
copper sulfate	aqueous	oxygen	copper
sodium iodinde	aqueous	iodine	hydrogen

- b) Write balanced half equations for the following electrolysis conversions.
 - i)

 $Cu^{2+} \rightarrow Cu$ $Cu^{2+} + 2e^- \rightarrow Cu$ iii) $O^{2-} \rightarrow O_2$ $2O^{2-} - 4e^- \rightarrow O_2$

- ii) $Cl^- \rightarrow Cl_2$ **2Cl^- 2e^-** $\rightarrow Cl_2$ iv) $H^+ \rightarrow H_2$ **2H^+ + 2e^-** $\rightarrow H_2$
- **5** When an iron nail is placed in copper(II) sulfate solution, a displacement reaction takes place forming copper metal and iron(II) sulfate.
 - a) Explain why iron displaces copper in this reaction. iron is more reactive than copper
 - b) Write a balanced equation for this reaction. Fe + CuSO₄ \rightarrow FeSO₄ + Cu
 - c) Write the simplest ionic equation for this reaction. Fe + $Cu^{2+} \rightarrow Fe^{2+} + Cu$
 - d) Write two half equations to show what happens in this reaction. Fe $2e^- \rightarrow Fe^{2+}$ Cu²⁺ + $2e^- \rightarrow Cu$
 - e) Explain clearly why this is a redox reaction.

Fe atoms lose electrons so are oxidised; Cu²⁺ ions gain electrons so is reduced; both oxidation and reduction take place

- **6** When a aqueous solution of bromine (Br₂) is added dropwise to an aqueous solution of potassium iodide (KI), a displacement reaction takes place to form brown iodine (I₂) and potassium bromide (KBr) in the solution.
 - a) Explain, in detail, why bromine displaces iodine in this reaction.
 - · bromine is more reactive than iodine
 - · bromine atoms gain an electron more easily than iodine
 - as bromine atoms are smaller and so the electron gained is closer to the nucleus
 - so there is a stronger attraction from the nucleus to the electron
 - b) Write a balanced equation for this reaction. $Br_2 + 2KI \rightarrow I_2 + 2KBr$
 - c) Write the simplest ionic equation for this reaction. $Br_2 + 2I^- \rightarrow 2Br^- + I_2$
 - d) Write two half equations to show what happens in this reaction. $Br_2 + 2e^- \rightarrow 2Br^- \qquad 2l^- 2e^- \rightarrow l_2$
 - e) Explain clearly why this is a redox reaction.

Γ ions loses electrons so are oxidised; Br_2 gains electrons so is reduced; both oxidation and reduction take place

Area	Strength	To develop	Area	Strength	To develop	Area	Strength	To develop
Done with care and thoroughness			Approx. reactivity of common metals			Write ionic equations for displacement		
Good SPG			Deduce if proton or electron transfer			Write half equations for displacement		
Write word equations for metal reactions			Write half equations			Explain displacement in terms of redox		
Write word equations for acid reactions			Understands why displacement occurs			Can explain halogen reactivity trend		

Atomic structure, structure & bonding

ion	sodium	oxide	magnesium	nitrate	carbonate
formula	Na⁺	O ^{2–}	Mg ²⁺	Mg ²⁺ NO ₃ ⁻	
		Γ	1	1	1
ion	hydroxide	bromide	sulfide	aluminium	ammonium
formula	OH⁻	Br⁻	S ^{2–}	Al ³⁺	NH4 ⁺

1 Give the formula of each of the following ions.

2 What is the structure type of each of the following substances? Tick the correct box. Also give the correct formula

name	sodium sulfate	potassium	carbon dioxide	iodine	helium	diamond	buckminster -fullerene	aluminium oxide
formula	Na ₂ SO ₄	K	CO ₂	l ₂	He	С	C ₆₀	Al ₂ O ₃
giant covalent						✓		
ionic	✓							✓
metallic		✓						
molecular			✓	✓			✓	
monatomic					✓			

<u>3</u> Complete the following table about some atoms and ions. The first row has been done for you.

Particle	Atom or ion	Atomic number	Mass number	Number of protons	Number of neutrons	Number of electrons	Electron structure
²⁷ ₁₃ Al	atom	13	27	13	14	13	2,8,3
$^{34}_{16}S^{2-}$	ion	16	34	16	18	18	2,8,8
³⁷ 17Cl	atom	17	37	17	20	17	2,8,7
$^{24}_{12}Mg^{2+}$	ion	12	24	12	12	10	2,8

Water is a molecular substance containing H₂O molecules. Explain why water has a low boiling point 100°C).

weak forces between molecules

5 Calcium oxide has a very high melting point (2572°C), does not conduct electricity as solid but does when molten. Explain these properties.

CaO is ionic

high melting point as strong forces between positive and negative ions does not conduct as a solid as ions cannot move does conduct as a liquid as ions can move

6 Steel is an alloy of iron. Steel is harder than pure iron, which is soft. Explain what an alloy is, why pure iron is soft and why steel is harder.

alloy: mixture of a metal with small amounts of other metals / carbon iron: soft as atoms are all same size so layers can slide over each other steel: harder as different sized atoms so layers cannot slide over each other as easily

<u>7</u> a How much greater is the surface area to volume ratio of a cube with 2 cm sides compared to one with 10 cm sides? Show full working.

2 cm cube:

surface area = $6 \times 2 \times 2 = 24 \text{ cm}^2$ volume = $2 \times 2 \times 2 = 8 \text{ cm}^3$ surface area : volume ratio = 24 : 8 = 3

10 cm cube: surface area = 6 x 10 x 10 = 600 cm² volume = 10 x 10 x 10 = 1000 cm³ surface area : volume ratio = 600 : 1000 = 6 : 10 = 0.6

surface area : volume ratio of 2 cm cube is 5 times bigger than 10 cm cube

b Explain why nanoparticles of gold have different properties to bulk gold.

Nanoparticles have greater surface area : volume ratio

Area	Strength	To develop	Area	Strength	To develop	Area	Strength	To develop
Done with care and thoroughness			Can find PNE numbers in ions			Know what an alloy is		
Good SPG			Can find PNE numbers in atoms			Why alloys are softer than pure metals		
Knows formula and charge of ions			Why molecular substance has low mpt			Calculate surface area : volume ratio		
Identify structure type from formula			Why ionicr substance has high mpt			Explain different nanoparticle properties		
Write formulae			Explain conductivity of substances					