

Chemical reactions 2

1	Complete <u>word</u> equations for each of the following reactions. Write <i>no reaction</i> if no reaction takes place.
	a) methanol (CH₃OH) + oxygen →
	b) silane (SiH ₄) + oxygen →
	c) hydrochloric acid + calcium oxide →
	d) ammonia + nitric acid →
	e) nitric acid + zinc →
	f) lithium + water →
	g) sodium carbonate + sulfuric acid →
2	Classify each of the following metals as having high / medium / low reactivity.
	a) gold b) calcium c) iron
3	Complete the table about the following reactions by ticking the correct boxes.

	trans	fer of	type of reaction		
equation	protons	electrons	redox	acid-base	
Fe + Cu(NO ₃) ₂ \rightarrow Fe(NO ₃) ₂ + Cu					
2NaOH + $H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$					
$Br_2 + 2KI \rightarrow 2KBr + I_2$					

4 a) Complete the table to show the products of the electrolysis of the following compounds.

compound	state	product at positive electrode	product at negative electrode
sodium chloride	molten		
potassium bromide	aqueous		
silver nitrate	aqueous		

	14774 1 1 1					
n۱	Write balanced	i hait edulatior	ne tor the	tallawina	Alectrolygic	CONVERSIONS
\mathbf{v}_{i}	WILL Dalance	i ilali equalioi	13 101 1110	, 10110 1111111111111111111111111111111	CICCLICITOR	COLLACIONO

i)	$Al^{3+} \rightarrow Al$	
ii)	$Br^-\!\to Br_2$	
iii)	$H^{^{+}} \rightarrow H_{2}$	
iv)	$OH^- \rightarrow O_2$	

sol	abi), a dispidution.	acemer	nt reac	tion takes place to for	m bron	ше (в	r ₂) and sodium chloride	(NaCl)	romi in t	
a)	What colour	change	would	you see in this reaction	?					
b)	Explain by reference to electrons why chlorine displaces bromine in this reaction.									
۵)										
C)		eu eq		for this reaction.						
d)	Write the sim	nplest id	onic equ	uation for this reaction.						
	Write two ha	If equat	tions to	show what happens in t	his rea	ction.				
e)										
				redox reaction.						
	Explain clear	ly why	this is a	a redox reaction						
	Explain clear	ly why	this is a	a redox reaction						
	Explain clear	ly why	this is a	a redox reaction						
	Explain clear	ly why	this is a	a redox reaction.						
f)	Explain clear	ly why	this is a	a redox reaction.						
f)	Explain clear	ly why	this is a	a redox reaction.			Area			
f)	Explain clear	ly why	this is a	Area Electron v proton transfer			Area Write half equations for displacement			
f)	Explain clear	ly why	this is a	Area Electron v proton transfer Identify electrolysis products			Area Write half equations for displacement Know halogen reactivity trend			
f) th care PG uuatior uuatior	Explain clear e and thoroughness as for reaction with O ₂	ly why	this is a	Area Electron v proton transfer Identify electrolysis products Write electrolysis half equations			Area Write half equations for displacement Know halogen reactivity trend Explain halogen reactivity trend			

Energy changes 1

1 a Calculate the energy change in the following reaction using the bond energies given.

[C-C = 348, C-H = 412, C=C = 612, H-H = 436 kJ/mol]

b Explain whether this reaction is exothermic or endothermic by discussing bond breaking and making.

c Complete the energy profile for this reaction. Draw arrows to show the overall energy chance (label "OEC") and the activation energy (label "AE")

2 Tick the correct box to show whether each of the following relates to an exothermic or an endothermic reaction.

	exothermic	endothermic
energy change is +72 kJ		
products have more energy than reactants		
neutralisation of hydrochloric acid by sodium hydroxide		
thermal decomposition of copper carbonate		

	lel cells have a number of advantages over non-rechargeable and rechargeable cells. The hydrogen fuel ll is the most common fuel cell.										
а	Give one advantage and one disadvantage of hydrogen fuel cells compared to rechargeable cells.										
	advantage										
	disadvantage .										
b	Give the half e	auatio	ns for th	ne reactions that take pl	ace at th	ne elec	trodes in h	/droaen fuel	cells.		
								_			
	anouc				· catriout	•					
						_					
4				by placing two different ution (as electrolyte).			positive electrode	negative electrode	voltage (V)	;	
				vay and measured the			nickel	iron	+0.19	_	
				h case. The table sho			iron	zinc	+0.32		
	electrode was	conne	cted to	which terminal of the vo	oitmeter.		iron	cobalt	+0.16		
						_					
c	What would the connected to the connected to the connected	ne volta he neg cell the metals	age be ative te greate would y	er of reactivity, with the sign of reactivity, with the sign of a cell was made using rminal of the voltmeter. St voltage with a positive ou use?	ng cobal e voltag	t and n	ickel, with	nickel I to a voltme	ter:		
	iii) which meta	ıl would	d be the	positive electrode?							
Area		Strength	To develop	Area	Strength	To develop	Area		Strength	To develop	
Oone with c	are and thoroughness			Can draw energy profiles			Use voltage to or	der metal reactivity			
Shows suita	able working			Can label activation / energy change			Work out voltage	in cells			
Calculate er	nergy change using bonds			Pros and cons of fuel cells			Use voltage data	to solve problems			
	xo/endothermic			Fuel cell electrode equations							
Explain if ex	co/endothermic using bonds			Knows what an electrolyte is						<u> </u>	
Explain if ex	co/endothermic using bonds			Knows what an electrolyte is		<u> </u>				1	

2

GCSE REVISION 15

Rates & equilibria 1

An experiment was carried out to see how the rate of a reaction changes during the reaction. A piece of magnesium was reacted with hydrochloric acid and the volume of hydrogen gas collected recorded. A graph was plotted of the results.

b	Explain why the reaction slows	down	
	e mixture. The time taken for the	um thiosulfate in a flask to form a precipitate e mixture to become too cloudy to see a cros	
	an be used to investigate factors	that affect the reaction rate.	
ca	A student carried out an experi	ment to see how changing the concentration trol variables in this experiment.	of the acid affects the
ca	A student carried out an experi reaction rate. List four key con	ment to see how changing the concentration	
ca	A student carried out an experiment reaction rate. List four key con	ment to see how changing the concentration trol variables in this experiment.	
ca	A student carried out an experiment reaction rate. List four key con	ment to see how changing the concentration trol variables in this experiment.	
a a	A student carried out an experiment reaction rate. List four key con 1	ment to see how changing the concentration trol variables in this experiment.	
a a	A student carried out an experiment reaction rate. List four key con 1	ment to see how changing the concentration trol variables in this experiment. 3 4	
a a	A student carried out an experiment reaction rate. List four key con 1	ment to see how changing the concentration trol variables in this experiment. 3 4	e of reaction.
a a	A student carried out an experiment reaction rate. List four key con 1	ment to see how changing the concentration trol variables in this experiment. 3	e of reaction.

a Draw a tangent to the line to find the rate at 40 seconds.

3	Ca	atalysts increas	e the ra	te of ch	nemical reactions. Expla	in, in sii	mple te	rms, how they work.			
4	Sulfur dioxide reacts with oxygen to form sulfur trioxide in a reaction that reaches a state of dynamic equilibrium in a closed system. The forward reaction is exothermic.										
					$2SO_2(g) + O_2(g) =$	≓ 2SC)₃(g)				
					eaction is in dynamic equal eq			was increased? Explain	your a	 nswer.	
	С	What would ha	appen t	o the yi	eld of sulfur trioxide if th	e press	ure was	s increased? Explain yo	ur ansv	ver.	
Area			Strength	To develop	Area	Strength	To develop	Area	Strength	To develop	
Done wit	h car	re and thoroughness			Calculate gradient			How T affects equilibrium position			
Shows s	uitab	le working			Explain why reactions slow down			Why T affects equilibrium position			
Can drav	v tan	gents to curves			Explain how catalysts work			How P affects equilibrium position			
Choose	point	s for gradient			Explain dynamic equilibrium			Why P affects equilibrium position			

Organic Chemistry 1

1 Draw the displayed structure of each of the following molecules in the boxes.

		methanol	butane
	-	propene	ethyl ethanoate
		properio	outy, outaindate
2	Нє	exane is an alkane. Hexene is an alkene. They both	contain six carbon atoms.
	a)	What is the molecular formula of hexane?	
	b)	Alkanes are saturated hydrocarbons. Explain these	e terms.
		hydrocarbon	
		saturated	
	c)	Describe a test what you could use to distinguish compound.	hexane from hexene. Give the result for each
		test	
		hexane result	
		hexene result	
3	a)	Ethanoic acid is a weak acid. Draw it structure.	
	h)	What are weak acids?	
	IJ)	vindt are wear acids!	

4	Ethene can be made by cracking of long alkanes. this is done.	Describe why this is done and <u>one way</u> in which

5 Name the monomers that these polymers are made from.

polymer	starch	proteins	poly(ethene)	DNA
monomer				

6 Draw the structure of the polymers formed from these monomers:, and state whether they are addition or condensation polymers.

monomer structure(s)	polymer structure	polymer type
H F C C H F H F H F F H F H F H F H F H F H H		
H H O H N N N N N N N N N N N N N N N N		
н—о—с—о—н н—о—с—с—с—с—о—н н н н н		

Area	Strength	To develop	Area	Strength	To develop	Area	Strength	To develop
Done with care and thoroughness			Test for C=C with Br ₂ (aq)			Draw addition polymers		
Good SPG			Understands strong and weak acids			Draw condensation polymers		
Can draw organic molecules			Knows how cracking is done			Identify addition/condensation polymers		
Knows organic definitions			Knows why cracking is done					
Write molecular formula of alkanes			Identify monomers for natural polymers					

Calculations 4

1)	a) How many moles in 33.0 kg of ammonium sulfate (NH ₄) ₂ SO ₄ .
	b) What is the mass of 0.040 moles of oxygen, O ₂ ?
2)	a) What maximum mass of methanol that can be made when 12 g of $CO + 2H_2 \rightarrow CH_3OH$ hydrogen reacts with an excess of carbon monoxide?
	b) In a reaction, 60 g of methanol was formed from 12 g of hydrogen. Calculate the percentage yield.
3)	Calculate the percentage atom economy to make iron from iron(III) $Fe_2O_3 + 3CO \rightarrow 2Fe + 2CO_2$ oxide by reaction with carbon monoxide.
4)	What volume of hydrogen gas is formed, measured at room temperature $Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$ and pressure, when 0.65 g of zinc reacts with sulfuric acid?
5)	What volume of carbon dioxide gas is formed when 100 cm 3 of propane gas burns (both gases are at room temperature and pressure)? $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$

	equation for the re			and use it to find the fo	nnuia	01 1110	un chloride. Tillally, v	viile a b	
7)	Lead reacts with chlorine to form lead(II) chloride. When 6.21 g of lead reacts with 2.84 g of chlorine, which is the limiting reagent and what mass of lead(II) chloride is formed? Pb + $Cl_2 \rightarrow PbCl_2$								
8)	Find the concentration of oxalic acid ($H_2C_2O_4$) in mol/dm³ and g/dm³ given that 25.0 cm³ of this solution reacts with 22.8 cm³ 0.100 mol/dm³ sodium hydroxide solution in a titration.								
8)	Find the concenture g/dm³ given that 0.100 mol/dm³ so	ration o 25.0 cm dium h	f oxalic n ³ of thi ydroxid	acid (H ₂ C ₂ O ₄) in mol/dissipation reacts with 22 esolution in a titration.	m³ and 2.8 cm³	H ₂ C	$S_2O_4 + 2NaOH \rightarrow Na_2 C$	C ₂ O ₄ + 2	2H₂O
8)	Find the concenture g/dm³ given that 0.100 mol/dm³ so	ration o 25.0 cn dium h	f oxalic n³ of thi ydroxid	acid (H ₂ C ₂ O ₄) in mol/dissipation reacts with 22 esolution in a titration.	m ³ and 2.8 cm ³	H ₂ C	$C_2O_4 + 2NaOH \rightarrow Na_2 C$	C ₂ O ₄ + 2	PH₂O
8)	Find the concentre g/dm³ given that to 0.100 mol/dm³ so	ration o 25.0 cn dium h	f oxalic 1 ³ of thi ydroxid	acid (H ₂ C ₂ O ₄) in mol/dissipation reacts with 22 esolution in a titration.	m ³ and 2.8 cm ³	H ₂ C	C ₂ O ₄ + 2NaOH → Na ₂ C	C ₂ O ₄ + 2	2H2O
8)	Find the concentre g/dm³ given that 0.100 mol/dm³ so	ration o 25.0 cm odium h	f oxalic n³ of thi ydroxid	acid (H ₂ C ₂ O ₄) in mol/dissipation reacts with 22 esolution in a titration.	m ³ and 2.8 cm ³	H ₂ C	5 ₂ O ₄ + 2NaOH → Na ₂ C	Ç ₂ O ₄ + 2	2H₂O
8)	Find the concentre g/dm³ given that to 0.100 mol/dm³ so	ration o 25.0 cm dium h	f oxalic	acid (H ₂ C ₂ O ₄) in mol/dissipation reacts with 22 esolution in a titration.	m ³ and 2.8 cm ³	H ₂ C	C ₂ O ₄ + 2NaOH → Na ₂ C	C ₂ O ₄ + 2	2H ₂ O
8)	Find the concentre g/dm³ given that 0.100 mol/dm³ so	ration o 25.0 cm odium h	f oxalic	acid (H ₂ C ₂ O ₄) in mol/dissolution reacts with 22 e solution in a titration.	m ³ and 2.8 cm ³	H ₂ C	S ₂ O ₄ + 2NaOH → Na ₂ C	C ₂ O ₄ + 2	2H ₂ O
8)	Find the concentre g/dm³ given that to 0.100 mol/dm³ so	ration o 25.0 cm dium h	f oxalic	acid (H ₂ C ₂ O ₄) in mol/di s solution reacts with 22 e solution in a titration.	m ³ and 2.8 cm ³	H ₂ C	S ₂ O ₄ + 2NaOH → Na ₂ C	C ₂ O ₄ + 2	2H ₂ O
	Find the concentum g/dm³ given that to 0.100 mol/dm³ so	dium h	f oxalic	e solution in a titration.	m ³ and 2.8 cm ³	H ₂ C		Strength	2H₂O
л	Find the concentum g/dm³ given that the concentum of the	dium h	ydroxid	e solution in a titration.					
Area Oone w	0.100 mol/dm³ so	dium h	ydroxid	e solution in a titration.			Area		
Shows	0.100 mol/dm³ so	dium h	ydroxid	Area Can work out % atom economy			Area Understands limiting reagents		
Area Done w Shows	vith care and thoroughness	dium h	ydroxid	Area Can work out % atom economy Can work out % yield Understands why yield < 100% Work out gas volume from mass or mol			Area Understands limiting reagents Work out moles for solutions		
Area Done w Shows Can wo Work or	vith care and thoroughness suitable working ork out Mr	dium h	ydroxid	Area Can work out % atom economy Can work out % yield Understands why yield < 100%			Area Understands limiting reagents Work out moles for solutions Convert mol/dm³ to g/dm³		