

3

GCSE REVISION 1

Atoms, ions, equations, Periodic Table

1 a) Complete the following table about protons, neutrons and electrons.

	neutron	proton	electron
relative charge			
relative mass			

b)	Define the term mass number.
,	
c)	Define the term atomic number.

2 Complete the following table about some atoms and ions. The first row has been done for you.

Particle	Atom or ion	Atomic number	Mass number	Number of protons	Number of neutrons	Number of electrons	Electron structure
19F-	ion	9	19	9	10	10	2,8
⁴⁰ ₁₈ Ar							
²⁷ / ₁₃ Al ³⁺							
				16	18	18	
				19	20	18	
				15	16	15	

	The element indium consists of two isotopes. 4.3% of the atoms are $^{113}_{49}$ In and 95.7% of the atoms are $^{115}_{49}$ In.
a)	What makes both of these atoms of the element indium?
b)	What are isotopes?
c)	Calculate the relative atomic mass of indium. Give your answer to 4 significant figures.

<u>4</u>		The diameter of an indium atom is 310 pm.
	a)	What is the diameter of an indium atom in metres? Give your answer in standard form.
	b)	How many indium atoms would fit in a line 20 cm long? Give your answer to 3 significant figures.
<u>5</u>		This question is about the Periodic Table
	a)	Name each of the following groups.
		Group 1
		Group 7
		Group 0
	b)	Which group would the following elements be in?
		element with electron structure 2,8,6
		element with electron structure 2,8,8
		element with electron structure 2,8,18,3
<u>6</u>		Balance each of the following equations.
	a)	$K + O_2 \rightarrow K_2O$
	b)	$CaCO_3 + HCl \rightarrow CaCl_2 + H_2O + CO_2$
	c)	$C_3H_8 + O_2 \rightarrow CO_2 + H_2O$

Area	Strength	To develop	Area	Strength	To develop	Area	Strength	To develop
Done with care and thoroughness			Can find PNE numbers in ions			Can use standard form		
Good SPG			Knows what determines an element			Can convert units		
Knows mass and charge of PNE			Knows what isotopes are			Can name common PT groups		
Can define atomic & mass numbers			Find A _r from isotope data			Determine group from electron structure		
Can find PNE numbers in atoms			Can use sig figs			Balance equations		

Atoms, ions, equations, Periodic Table, mixtures

1 Complete the following table about some atoms and ions.

Particle	Atom or ion	Atomic number	Mass number	Number of protons	Number of neutrons	Number of electrons	Electron structure
41 19 K							
				13	14	10	
				8	8	10	

<u>2</u>	a)	are ⁴¹ / ₁₉ K. Calculate the relative atomic mass of potassium. Give your answer to 3 significant figures.
	b)	The diameter of a potassium atom is 440 pm. State this in metres in standard form.
<u>3</u>	a)	i) Describe what you see when sodium burns in oxygen.
		ii) Write a balanced equation for this reaction.
		iii) Sodium oxide is formed in this reaction. Explain why this sodium oxide has a high melting point.
	b)	Potassium is more reactive then sodium. Explain why.
<u>4</u>		Iron is a transition metal. Give three ways in which transition metals are different to the Group 1 (alkali metals). 1
		2

<u>5</u> a)	Chlorine is a	gas at room	temperature made of mol	ecules.	The bo	oiling point of chlorine is -	34°C.					
	i) Give the formula of chlorine molecules.											
	ii) Explain w	hy chlorine h	nas a low boiling point									
	ii) Explain why chlorine has a low boiling point.											
b)			hlorine or bromine. Expla									
c)			quations. Write <i>no reaction</i>									
	,											
	ii) bromine	r potassium i	odide									
6	Dimitri Meno	leleev is knov	wn as the "father of the Pe	riodic T	Гable".	What did Mendeleev do in	n terms	of the				
_			vere his ideas accepted?									
7	What metho	d would you i	use to separate each of th	e follow	ving mix	ktures?						
a)	water from a	solution of s	alt in water									
b)	octane from	a mixture of p	pentane and octane (they	are mis	scible li	quids)						
c)	sodium nitra	te from a solu	ution of sodium nitrate in w	ater								
d)	petrol from a	mixture of po	etrol and water (they are i	mmiscil	ble liqui	ds)						
,	•	•	mixture with water (CaCC		-	•						
0,	odiolam odib	onato nom a	mixture with water (eace)	olabio	water /						
Area		Strength To develo	op Area	Strength	To develop	Area	Strength	To develor				
Done with ca	are and thoroughness		Can use standard form			Understand term diatomic						
Good SPG			Can convert units			Why molecular substances have low mpt						
Can find PN	E numbers in atoms		What happens when Na reacts with O ₂			Know & explain Group 7 reactivity trend						
Can find PN	E numbers in ions		Write equation when Na reacts with O ₂			What happens in halogen displacements	<u> </u>					
Find A _r from	isotope data		Why ionic substances have high mpt			Why Mendeleev's ideas were accepted						
Can use sig	figs		Know & explain Group 1 reactivity trend		1	Can give methods to separate mixtures						

Formulae, equations, particles, structure & bonding

L. N	sodium sulfate				c) ammonium bromide d) aluminium nitrate							
b)	iron(III) oxide	dde			d) aluminium nitrate							
	Write balance	d equations	for the follo	owing equa	tions.							
a)	Na + $O_2 \rightarrow Na$	a ₂ O										
b)	magnesium +	nitric acid -	→ magnesi	um nitrate ·	+ hydrogen							
	Complete the	following tab	ole about s	ome atoms	and ions.	The first	row has be	een done for	you.			
	Particle	Atom or ion	Atomic number			ber of tons	Number of neutrons	Number of electrons	Electro structu			
	¹ 9F-	ion	9	19)	9	10	10	2,8			
	²⁷ ₁₃ Al ³⁺											
	²⁷ / ₁₃ Al ³⁺	atom				19	20					
	²⁷ / ₁₃ Al ³⁺	atom				19	20	18				
	What is the st	ructure type	of each of	sulfur	ng substand	ces. Tick	18 the correcter	et box.	sucro			
	What is the st	ructure type		sulfur dioxide		buckmins	18 the correcter	calcium bromide				
	What is the st	ructure type	potassium	sulfur	ng substand	ces. Tick	ter helium	et box.				
	What is the st	ructure type	potassium	sulfur dioxide	ng substand	buckmins	ter helium	calcium bromide				
	what is the st	ructure type	potassium	sulfur dioxide	ng substand	buckmins	ter helium	calcium bromide	sucro			
	what is the st	ructure type	potassium	sulfur dioxide	ng substand	buckmins	ter helium	calcium bromide				

			both forms of carbon. Explain these propert					
has a very lo	w boiling	point	ilicon dioxide (SiO ₂) are (–78°C) while silicon dic structure and bonding ir	xide ha	as a ver	y high melting point (1		
	••••	••••						
to conduct an	d melts	at 2072	d from aluminium oxide to the second of the	ing struc				
	Strength	To develop		Strength	To develop	Area	Strength	To develo
ith care and thoroughness			Can find PNE numbers in atoms			Why giant covalent have high mpt		
PG			Can find PNE numbers in ions		-	Why giant covalent conduct or not		
ormulae			Identify structure type from formula		-	Why ionic have high mpt		1
balanced equations	1		Why molecular substance has low mpt	1	1	Why ionic conduct or not	1	1

22-May-2018 © www.CHEMSHEETS.co.uk **Chemsheets GCSE 1151**

Calculations

1		Give the formula of the following ionic substance	ces.	
	a)	potassium oxide	d)	magnesium hydroxide
	b)	aluminium bromide	e)	ammonium iodide
	c)	iron(III) sulfide	f)	calcium nitrate
2		Calculate the relative formula mass of the follow	wing	g substances.
	a)	chlorine, Cl ₂		
	b)	ammonium sulfate, (NH ₄) ₂ SO ₄		
3	a)	What mass of sodium reacts with 95 g of titanion		chloride? TiCl₄ + 4Na → Ti + 4NaCl
	b)	Calculate the percentage atom economy to ma	ike 1	itanium in this reaction.
4		Ammonia is made by reaction of nitrogen with	hyd	rogen. $N_2 + 3H_2 \rightarrow 2NH_3$
	a)	Calculate the maximum mass of ammonia the reacting with nitrogen.	hat	could be formed from reaction of 12 g of hydrogen
	b)	In this reaction, only 15 g of ammonia was form	ned.	Calculate the percentage yield.
	c)	Suggest two reasons why the yield was less th	 an <i>'</i>	100%.
		1 2		

	excess. Dete	rmine w	hich is	the limiting reagent an Ca + Cl ₂ –		alculate	the mass of calcium	chloride fo	rmed.
6	25.0 cm³ of a solution of calcium hydroxide was titrated against a solution of 0.100 mol/dm³ hydrochloric acid. 26.3 cm³ of the hydrochloric acid was needed to neutralise the calcium hydroxide.								
a)	Describe how	the titra	tion is	done.					
b)	Calculate the	he equation for the re	eaction is s	hown.					
	2HCl + Ca(OH) ₂ \rightarrow CaCl ₂ + 2H ₂ O								
c)	Calculate the	concent	ration o	of the calcium hydroxid	e in g/dn	n ³ .			
Area		Strength	To develop	Area	Strength	To develop	Area	Strength	To develo
Done with car	e and thoroughness			Can work out mass from moles			Work out moles for solutions		
Shows suitabl	le working			Can work out % atom economy			Convert mol/dm³ to g/dm³		
Can write ioni	c formulae			Can work out % yield			Does not round too much		
Can work out	M _r			Understands why yield < 100%			Can use sig figs		
Work out mole	es from mass			Understands limiting reagents			Gives units		
Use equation	to find reacting moles			Can describe how to do a titration					

In an experiment, 4.0 g of calcium was reacted with 4.0 g of chlorine. One of the chemicals was in

5

Atomic structure, structure & bonding, formulae & equations

1 Complete the following table about some atoms and ions.

Particle	Atom or ion	Atomic number	Mass number	Number of protons	Number of neutrons	Number of electrons	Electron structure
²⁷ ₁₃ Al ³⁺							
¹⁴ ₆ C							
31 _P 3-							
				8	10	10	

<u>2</u>		The element indium consists of two isotopes, with 4.3% of the atoms are $^{113}_{49}\mathrm{In}$ and 95.7% of the atoms are $^{115}_{49}\mathrm{In}$.
	a)	What are isotopes?
	b)	Calculate the relative atomic mass of indium. Give your answer to 4 significant figures.

3 Give the formula and structure type of each of the following substances. Tick the correct box.

name	lithium oxide	argon	ammonia	silver(I) nitrate	buckminster- fullerene	diamond
formula						
giant covalent						
ionic						
metallic						
molecular						
monatomic						

4	Balance	these	equation	าร
-	Dalaricc	111000	cquation	

a) Mg + HNO₃
$$\rightarrow$$
 Mg(NO₃)₂ + H₂

b)
$$C_4H_8 + O_2 \rightarrow CO_2 + H_2O$$

c) Fe +
$$Cl_2 \rightarrow FeCl_3$$

	5	Give the formula	of the	following	ionic	substances
--	---	------------------	--------	-----------	-------	------------

a) iron(III) oxide	 c) aluminium nitrate	

b) potassium sulfate d) barium hydroxide

<u>6</u>		Sodium chlori difference.	de has	a high r	melting point (801°C) wh	ile wate	er has a	low melting point (0°C).	Expla	n this
<u>7</u>					ty as a solid and when r lten. Explain this differe		Alumini	ium oxide does not cond	uct elec	ctricity
<u>8</u>		Nickel reacts	with cop	per(II)	sulfate to form copper:	Ni + C	SuSO ₄ –	→ NiSO ₄ + Cu		
	a)	Write two half	equatio	ons for t	this reaction.					
	b)	Write an ionic	equatio	n for th	nis reaction.					
	c)	Explain clearly	y why th	nis is a	redox reaction.					
	d)				is reaction because it is reactive than copper.	more re	eactive	than copper. Explain, in	terms (of
Area			Strength	To develop	Area	Strength	To develop	Area	Strength	To develop
Done w	ith care	e and thoroughness			Can find A _r from isotope abundance			Why substances conduct or not		<u> </u>
Good S	PG				Write formulae			Write half equations for displacement		<u> </u>
Can find	d PNE	numbers in atoms			Identify structure type from name			Write ionic equation for displacement		
Can find	d PNE	numbers in ions			Write balanced equations			Explain displacement in terms of redox		
Knows	what is	sotopes are			Why substances have high/low mpts					

Calculations 2

1		Give the formula of the following ionic substan	ces.
	a)	aluminium chloride	d) calcium nitrate
	b)	potassium sulfide	e) magnesium hydroxide
	c)	sodium sulfate	f) iron(II) oxide
2		Calculate the relative formula mass of the follo	wing substances.
	a)	fluorine, F ₂	
	b)	iron(III) nitrate, Fe(NO ₃) ₃	
3	a)	Calculate the maximum mass of calcium oxide carbonate.	nposition of calcium carbonate: $CaCO_3 \rightarrow CaO + CO_2$ that could be formed from heating 500 g of calcium
	b)	In a reaction, 250 g of calcium oxide was formed percentage yield for this reaction.	ed from heating 500 g of calcium carbonate. Calculate the
	c)	Suggest two reasons why the yield was less th	an 100%.
		1	
	d)	Calculate the atom economy to make calcium	oxide from calcium carbonate by this reaction.
4		What mass of oxygen reacts with 270 g of alur	minium? $4Al + 3O_2 \rightarrow 2Al_2O_3$

5		Calculate the	volume	of the f	following gases at room	temper	ature a	nd pressure.		
	a)	3 moles of ox	ygen, O	2						
	b)	22 g of carbor	n dioxide	e, CO ₂						
6					gas is needed to react ved at the same temperate			f nitrogen to make amm	ionia, v	vith the
					$N_2 + 3H_2 \rightarrow$					
7		5.6 g of iron (I	Fe) reac	ets with	24 g of bromine (Br ₂) to	make a	a comp	ound containing iron and the balanced equation fo	bromir	ne only
8		25.0 cm ³ of a 0.100 mol dm	solution ⁻³ sodiur	of citri	c acid, which is represer bxide solution in a titration $H_3T + 3NaOH \rightarrow 1$	n.		the equation, reacted wit	th 26.4	cm ³ of
	a)	Calculate the	concent	tration o	of the citric acid in mol/d	m ³ . Giv	e your	answer to 3 significant fi	gures.	
	c)	Calculate the Give your ans				. The	relative	formula mass of citric a	bid is 22	26.
			0, "						a	
Area	th a-	and therewake	Strength	To develop		Strength	To develop		Strength	To develop
		e and thoroughness			Can work out mass from moles			Deduce molar reacting ratio from mass		
		e working			Can work out % atom economy	-		Work out moles for solutions		
		c formulae			Can work out % yield			Convert mol/dm³ to g/dm³		
Can wo					Understands why yield < 100%			Does not round too much		
		es from mass			Work out gas volume from mass or mol			Can use sig figs		
Use equ	ation t	to find reacting moles			Understands reacting gas volumes	<u> </u>		Gives units		

Chemical Reactions 1

1	Complete word	equations for each	of the following	reactions	Write no	reaction if no	reaction takes r	olace
	Complete Word	Cyualions for Caci		i Cachonia.	VVIIIC IIC	i cachon ii iio	Todolion lancs k	JIGUU

copper + oxygen →	
	copper + oxygen →

2 Classify each of the following metals as having high / medium / low reactivity.

a) silver	 c)	iron	 c)	lithium	

b) magnesium	d)	zinc	e)	conner	
b) magnesiam	 u,	21110	 c,	COPPCI	

3 Complete the table about the following reactions by ticking the correct boxes.

agustian	trans	fer of	type of reaction		
equation	protons	electrons	redox	acid-base	
$Ca + 2HCl \rightarrow CaCl_2 + H_2$					
$Fe_2O_3 + 3C \rightarrow 2Fe + 3CO$					
$MgO + H_2SO_4 \rightarrow MgSO_4 + H_2O$					
$Zn + CuSO_4 \rightarrow ZnSO_4 + Cu$					

4 a) Complete the table to show the products of the electrolysis of the following compounds.

compound	state	product at positive electrode	product at negative electrode
potassium bromide	molten		
copper sulfate	aqueous		
sodium iodide	aqueous		

h)	Write balanced half equa	ations for the f	following electro	vsis conversions
U)	i vviile balanceu nan equa		ioliowing electro	ysis curiversions.

i)
$$Cu^{2+} \rightarrow Cu$$
 iii) $O^{2-} \rightarrow O_2$

$$\text{ii)} \quad \mathsf{Cl}^- \to \mathsf{Cl}_2 \quad ... \\ \text{iv) } \mathsf{H}^+ \to \mathsf{H}_2 \quad ... \\ \\$$

	me	etal and iron(II)	sulfate.							
	a)	Explain why ire	on disp	laces c	opper in this reaction					
	b)	Write a balanc	ed equ	ation fo	or this reaction.					
	c)	Write the simp	lest ion	ic equa	ation for this reaction.					
	d)	Write two half	equatio	ons to s	how what happens in th	is react	ion.			
	e)									
6	(KI sol	nen a aqueous), a displacem ution. Explain, in det	solution ent rea	on of bi action t y brom	romine (Br ₂) is added d takes place to form bro ine displaces iodine in th	ropwise wn iod nis reac	e to an line (I ₂)	aqueous solution of por and potassium bromid	tassium e (KBr)	iodide
	b)	Write a balanc								
	c)	Write the simp	lest ion	ic equa	ation for this reaction					
	d)	Write two half	equatio	ons to s	how what happens in thi	is react	ion.			
	e)	Explain clearly	why th	is is a	redox reaction.					
Area			Strength	To develop	Area	Strength	To develop	Area	Strength	To develop
Oone wit	th care	e and thoroughness			Approx. reactivity of common metals			Write ionic equations for displacement		
Good SF	PG				Deduce if proton or electron transfer			Write half equations for displacement		
Vrite wo	ord equ	uations for metal reactions			Write half equations			Explain displacement in terms of redox		
Vrite wo	ord equ	uations for acid reactions			Understands why displacement occurs			Can explain halogen reactivity trend		

When an iron nail is placed in copper(II) sulfate solution, a displacement reaction takes place forming copper

Atomic structure, structure & bonding

1 Give the formula of each of the following ions.

ion	sodium	oxide	magnesium	nitrate	carbonate
formula					
ion	hydroxide	bromide	sulfide	aluminium	ammonium
formula					

2 What is the structure type of each of the following substances? Tick the correct box. Also give the correct formula

name	sodium sulfate	potassium	carbon dioxide	iodine	helium	diamond	buckminster -fullerene	aluminium oxide
formula								
giant covalent								
ionic								
metallic								
molecular								
monatomic								

3 Complete the following table about some atoms and ions. The first row has been done for you.

Particle	Atom or ion	Atomic number	Mass number	Number of protons	Number of neutrons	Number of electrons	Electron structure
²⁷ ₁₃ Al							
³⁴ ₁₆ S ²⁻							
				17	20	17	
				12	12	10	

<u>4</u>	Water is a molecular substance containing $\rm H_2O$ molecules. Explain why water has a low boiling point 100°C).	H_O_H

				high melting point (257 se properties.	72°C), (does n	ot conduct electricity as s	solid bu	ıt does
	Steel is an a iron is soft ar				iron, w	hich is	soft. Explain what an allo	y is, wh	ny pure
	How much g cm sides? S				tio of a	cube v	vith 2 cm sides compared	to one	with 10
b	Explain why	nanopa	rticles	of gold have different pro	operties	s to bull	c gold.		
A		Cárc a sáb	To dovolon	Asso	Ctronoth	To develop	A	Ctronoth	To develop
Area Done with care	and thoroughness	Strength	To develop	Can find PNE numbers in ions	Strength	10 develop	Know what an alloy is	Strength	To develop
Good SPG	and morougnitiess		1	Can find PNE numbers in atoms			Why alloys are softer than pure metals		
	and charge of ions			Why molecular substance has low mpt			Calculate surface area : volume ratio		
Identify structur	re type from formula			Why ionicr substance has high mpt			Explain different nanoparticle properties		
Write formulae				Explain conductivity of substances					