

GCSE REVISION 12

Chemical reactions 2

(SiHa) +	- oxygen →					c) hydrochloric a		
,	calcium oxide →					, -		
T (Salcium Oxide →				•			
						,		
						,		
					G,			
	y each of the following metals a) gold ete the table about the followi	b) calciui	ຠ	c) iron				
	equation	, , , , , , , , , , , , , , , , , , ,		sfer of	type of	type of reaction		
			protons	electrons	redox	acid-base		
	Fe + Cu(NO ₃) ₂ → Fe(l	NO3)2 + Cu						
	2NaOH + H₂SO ₄ → N	a ₂ SO ₄ + 2H ₂ O						
	$Br_2 + 2KI \rightarrow 2KBr + I_2$							
	unlete the table to show the n	oducts of the elec	trolysis of the	following com	nounds			
a) Com	compound state		product at positive			product at negative electrode		
a) Com		state		uct at positive electrode	pro			

aqueous

aqueous

potassium bromide

silver nitrate

			s for the following electrol					
i) $Al^{3+} \rightarrow Al^{3+}$	l					ii)	Br ⁻ → 1	Br ₂
						,	\rightarrow	H ₂
						,	\rightarrow	O ₂
		of chlor		ise to a	n aque	s GCSE 1262 ous solution of sodium bro oride (NaCl) in the solution		NaBr),
a) What colour c	hange v	vould yo	ou see in this reaction?					
			s why chlorine displaces			reaction.	b)	
c) Write a baland	ced equa	ation foi	this reaction.					
								d)
		·	n for this reaction.					-\
			v what happens in this rea					e)
						f)	Explain	clearly
		why th	is is a redox reaction					
ea	Strength	To develop	Area	Strength	To develop	Area	Strength	To develop
one with care and thoroughness			Electron v proton transfer			Write half equations for displacement		
ood SPG			Identify electrolysis products			Know halogen reactivity trend		
ord equations for reaction with O ₂			Write electrolysis half equations			Explain halogen reactivity trend		
ord equations for metal reactions			Write formulae			Give observations in halogen displacement		
ord equations for acid reactions			Write balanced equations			Explain redox in terms of electrons		
als as high/medium/low reactivity			Write ionic equations for displacement					

GCSE REVISION 14

exothermic

endothermic

Energy changes 1

01		12, C=0					•			
Н	H H	Н	Н	Н	Н	Н				
нн+2нн										
нн сс	С		С		СС		С	С		
									нннн	
		_								
Explain whether this	reaction is	exothe	ermic	or en	dotherm	ic by dis	scussing	bond br	eaking and making.	
						•				
Complete the energy	y profile for	this rea	actior	n. Dra			ow the ov	erall ene	rgy chance (label	
Complete the energy "OEC") and the act	y profile for	this rea	actior	n. Dra \E")			ow the ov	erall ene	rgy chance (label	
complete the energy "OEC") and the act	y profile for	this rea	actior	n. Dra			ow the ov	erall ene	rgy chance (label	
Complete the energy "OEC") and the act Energy	y profile for	this rea	bel "A	Æ")			ow the ov	erall ene	rgy chance (label	
"OEC") and the act	y profile for	this rea	actior bel "A	λ Ε ")			w the ov	erall ene	rgy chance (label	
"OEC") and the act Energy	y profile for tivation ene	this rea	bel "A	λ Ε ")			ow the ov	erall ene	rgy chance (label	
"OEC") and the act	y profile for tivation ene	ergy (lab	bel "A	λ Ε ")	w arrow	s to sho	ow the ov		rgy chance (label	
"OEC") and the act	y profile for tivation ene	ergy (lab	bel "A	λ Ε ")	w arrow	s to sho			rgy chance (label	
"OEC") and the act	y profile for tivation ene	ergy (lab	bel "A	λ Ε ")	w arrow	s to sho			rgy chance (label	
"OEC") and the act	y profile for tivation ene	ergy (lab	bel "A	λ Ε ")	w arrow	s to sho			rgy chance (label	
нн+ 2 н СС СС	y profile for tivation ene	ergy (lab	bel "A	λ Ε ")	w arrow	s to sho			rgy chance (label	

thermal decomposition of copper carbonate									
3 Fuel cells have a num the most common	nber of a	advanta	HEMSHEETS.co.uk 23-May-20 ges over non-rechargeabl				The hydrogen	fuel ce	ll is
a Give one advanta	age and	l one di	sadvantage of hydrogen f	uel cells	s compa	ared to rech	ıargeable cells	. advant	tage
							dis <i>ɛ</i>	advantaç	је
•			reactions that take place a						
			cathode		.	····			
						nickel	iron	+0.19	
4 A simple cell can be made by placing two different metals (as electrodes) in a salt solution (as electrolyte).						iron	zinc	+0.32	
A student made some cells in this way and measured the voltage (potential difference) in each case. The table shows which electrode was connected to which terminal of the voltmeter.						iron	cobalt	+0.16	
p	positive lectrode		ative voltage trode (V)						
a What is an electr	olyte? .								
the four metals in o	order of		ity, with the most reactive					U Fi	lace
most .								leas	;t
c What would the verminal of	voltage voltmet	be if a c er	cell was made using cobal	lt and ni	ickel, wi	th nickel c	onnected to th	e negati	ive
d To create the cel	II the gr	eatest v	oltage with a positive volt	age wh	en conn	ected to a	voltmeter: i) wl	hich two)
metals would y	ou use?)					ii) wha	at would	the
voltage be?									
the positive ele	ctrode?								
Area	Strength	To develop	Area	Strength	To develop	Area		Strength	To develop
Done with care and thoroughness			Can draw energy profiles			Use voltage to o	order metal reactivity		
Shows suitable working			Can label activation / energy change			Work out voltage	e in cells		

Use voltage data to solve problems

Pros and cons of fuel cells

Fuel cell electrode equations

Knows what an electrolyte is

Calculate energy change using bonds

Explain if exo/endothermic using bonds

Deduce if exo/endothermic

Rates & equilibria 1

1 An experiment was carried out to see	•	60	
how the rate of a reaction changes during the reaction. A piece of	Volume of hydrogen (cm ³)	50	\times^{\times}
magnesium was reacted with hydrochloric acid and the volume of hydrogen gas collected recorded. A graph was plotted of the results.	GCSE REVISION 15	40 30 20 10 0 20 40 60 80 100 120 140 1	60 Time (s)
a Draw a tangent to the line to fir	nd the rate at 40 seconds.		
b Explain why the reaction	slows down.		
	n thiosulfate in a flask to form a precipit nixture to become too cloudy to see a c ffect the reaction rate.		
a A student carried out an experi reaction rate. List four key co	ment to see how changing the concent ntrol variables in this experiment.	ration of the acid affects th	е
1	3		2
	4	b	Explain why
	ne acid would increase the rate of react		

3 Catalysts increase the			MSHEETS.co.uk 11-February cal reactions. Explain, in s					
4 Sulfur dioxide reacts closed system. Th	with oxy ie forwa	gen to f	form sulfur trioxide in a relion is exothermic.	action th	nat reac	hes a state of dynamic e	quilibriu	m in a
			$2SO_2(g) + O_2(g)$	g) ⇒ 2S0	O₃(g)			
a What is happeni	ng wher	n a read	tion is in dynamic equilibr	ium?				
b What would hap	pen to t	he yield	of sulfur trioxide if the ter	mperatu	ıre was	increased? Explain your a	answer.	
• What would hap	non to t	he vield	of sulfur trioxide if the pr	occure v	was incr	eased2 Explain your ans	Nor	
c what would hap	pen to t	rie yieiu	of Sulful trioxide if the pre	essure v	was inci	eased? Explain your ansv	wei.	
Area	Strength	To develop	Area	Strength	To develop	Area	Strength	To develop
Done with care and thoroughness			Calculate gradient			How T affects equilibrium position		
Shows suitable working			Explain why reactions slow down			Why T affects equilibrium position		
Can draw tangents to curves			Explain how catalysts work			How P affects equilibrium position		
Choose points for gradient			Explain dynamic equilibrium			Why P affects equilibrium position		

©

www.CHEMSHEETS.co.uk 11-February-2019 Chemsheets GCSE 1265

GCSE REVISION 17

I Diaw	the displayed structure of each of the following molect	iles III tile boxes.
	methanol	butane
	propene	ethyl ethanoate
	ne is an alkane. Hexene is an alkene. They both contai	
of	hexane?	b) Alkanes are saturated hydrocarbons.
Ex	plain these terms.	
	hydrocarbon	
	saturated	
c)	Describe a test what you could use to distinguish hexa	ne from hexene. Give the result for each compound.
	test	
	hexane result	
	hexene result	
3 a) Eth	anoic acid is a weak acid. Draw it structure.	
b)	What are weak acids?	
D)	what are weak acids?	
4 Fthen	© www.CHEMSHEETS.co.uk 2-Januar e can be made by cracking of long alkanes. Describe v	y-2018 Chemsheets GCSE 1281
	2 22	<u> </u>

 $\ensuremath{\mathsf{5}}$ Name the monomers that these polymers are made from.

polymer	starch	proteins	poly(ethene)	DNA
monomer				

6 Draw the structure of the polymers formed from these monomers:, and state whether they are addition or condensation polymers.

monomer structure(s)	polymer structure	polymer type
HF CC HF		
H H O NO CC H		
н он н о н о ссссо н н н н н		

Area	Strength	To develop	Area	Strength	To develop	Area	Strength	To develop
Done with care and thoroughness			Test for C=C with Br ₂ (aq)			Draw addition polymers		
Good SPG			Understands strong and weak acids			Draw condensation polymers		
Can draw organic molecules			Knows how cracking is done			Identify addition/condensation polymers		
Knows organic definitions			Knows why cracking is done					
Write molecular formula of alkanes			Identify monomers for natural polymers					

©

www.CHEMSHEETS.co.uk 2-January-2018 Chemsheets GCSE 1281

GCSE
REVISION
18
Calculations 4

	sulfate (NH ₄) ₂ SO ₄ .
	en, O ₂ ?b) What i
	urbon monoxide?
	O + 2H ₂ → CH ₃ OH
b) In a reaction, 60 g of methanol was formed from 1	2 g of hydrogen. Calculate the percentage yield.
Calculate the percentage atom economy to make iron	from iron(III) oxide by reaction with carbon monoxide. $Fe_2O_3 + 3CO 2Fe + 2CO_2$
What volume of hydrogen gas is formed, measured at om temperature and pressure, when 0.65 g of zinc	reacts with sulfuric acid? Zn + H ₂ SO ₄ ZnSO ₄ + H ₂
What volume of carbon dioxide gas is formed when _{Co} oo cm ³ of propane gas burns (both gases are at room mperature and pressure)?	3H ₈ + 5O ₂ 3CO ₂ + 4H ₂ O
0.595 g of tin (Sn) reacts with 0.71 g of chlorine (Cl ₂)	-May-2018 Chemsheets GCSE 1282 to form tin chloride. Find the simplest molar ratio in which e tin chloride. Finally, write a balanced equation for the reaction

7) Lead reacts with chlo When 6.21 g of lead rea is the limiting reagent a	acts wit	h 2.84 g	g of chlorine, which PD + 0		bCl ₂			
8) Find the concentration mol/dm ³ and g/dm ³ givereacts with 22.8 cm ³ 0.1	en that :	25.0 cm	$(H_2C_2O_4)$ in 3 of this solution H_2C_2		titration	Na ₂ C ₂ O ₄ + 2H ₂ O		
Area	Strength	To develop	Area	Strength	To develop	Area	Strength	To develop
Done with care and thoroughness			Can work out % atom economy			Understands limiting reagents		
Shows suitable working			Can work out % yield			Work out moles for solutions		
Can work out Mr			Understands why yield < 100%			Convert mol/dm³ to g/dm³		
Work out moles from mass			Work out gas volume from mass or mol			Does not round too much		
Can work out mass from moles			Understands reacting gas volumes			Gives units		

Deduce molar reacting ratio from mass

Use equation to find reacting moles