

GCSE REVISION 1 Atoms, ions, equations, Periodic Table

		neutron	pr	oton	electron		
relati	ve charge					7	
relat	ive mass						
b) Define	the term mass	number					
	the term atomi						,
e the followi	ng table about s	some atoms a	and ions. The	first row has b	een done for	you.	
Particle	Atom or ion	Atomic number	Mass number	Number of protons	Number of neutrons	Number of electron s	Elec struc
F! !!"	ion	9	19	9	10	10	2,
!" Ar !"							
Al ^{!!} !"							
				16	18	18	
				19	20	18	
				15	16	15	
				1			<u> </u>
nent indium	consists of two	isotopes. 4.3	% of the atom	s are _{!"} In ^{!!"} and	I 95.7% of the a	itoms are _{!"} In ^{!!'}	". a) Wl
							,

Calculate the relative atomic mass of indium. Give your answer to 4 significant figures.	
© www.CHEMSHEETS.co.uk 22-May-2018 Chemsheets GCSE 1082 4 The diameter of an indium atom is 310 pm.	
a) What is the diameter of an indium atom in metres? Give your answer in standard form.	h) How
many indium atoms would fit in a line 20 cm long? Give your answer to 3 significant figures.	3) 1 10W
5_This question is about the Periodic Table	
a) Name each of the following groups.	
Group 1	
Group 7	
Group 0	
b) Which group would the following elements be in?	
element with electron structure 2,8,6	
element with electron structure 2,8,8	
element with electron structure 2,8,18,3	
6 Balance each of the following equations.	
a) K + $O_2 \rightarrow K_2O$	
b) CaCO ₃ + HCl \rightarrow CaCl ₂ + H ₂ O + CO ₂	

c) $C_3H_8 + O_2 \rightarrow CO_2 + H_2O$

C) C31 16 1 O2 → CC	72 112							
Area	Strength	To develop	Area	Strength	To develop	Area	Strength	To develop
Done with care and thoroughness			Can find PNE numbers in ions			Can use standard form		
Good SPG			Knows what determines an element			Can convert units		
Knows mass and charge of PNE			Knows what isotopes are			Can name common PT groups		
Can define atomic & mass numbers			Find A _r from isotope data			Determine group from electron structure		
Can find PNE numbers in atoms			Can use sig figs			Balance equations		

www.CHEMSHEETS.co.uk 22-May-2018 Chemsheets GCSE 1082

GCSE REVISION 4

10

Atoms, ions, equations, Periodic Table, mixtures

8

1 Complet	te the followin	g table about	some atoms a	ind ions.				
	Particle	Atom or ion	Atomic number	Mass number	Number of protons	Number of neutrons	Number of electron s	Electron structure
	!"K ^{!"}							
					13	14	10	

<u>2</u> a) T	The element potassium consists of two isotopes. 93.3% of the atoms are profit and the rest of the atoms Calculate the relative atomic mass of potassium. Give your answer to 3 significant figures.	are _{!"} K ^{!"} 	
b)	The diameter of a potassium atom is 440 pm. State this in metres in standard form.		
<u>3</u> a) i)	Describe what you see when sodium burns in oxygen.		 ii)
	Write a balanced equation for this reaction.		,
	Sodium oxide is formed in this reaction. Explain why this sodium oxide has a high melting point.		
b)	Potassium is more reactive then sodium. Explain why.		

4 Iron is a transition m	etal. Gi	ive three	e ways in which transition	metals	are diffe	erent to the Group 1 (alkali	metals)).
1								
2								
3								
E a) Chlarina is a gas	at raam		CHEMSHEETS.co.uk 22-May-				Sive the	
5a) Chiorine is a gas	at room	i tempe	rature made of molecules.	The bo	niing po	oint of chlorine is –34°C. i) (Jive the	
formula of chlorir	ne mole	cules				ii) Explai	n why	
chlorine has a lo	w boilin	g point.						
							b) V	Vhich
is more reactive,	chlorin	e or bro	mine. Explain your answe	r.				
c) Complete the	followin	g equat	ions. Write <i>no reaction</i> if t	here is	no reac	tion.		
i) chlorine + s	odium 1	fluoride					ii)
bromine + po	tassium	iodide						
				ole". Wh	at did N	Mendeleev do in terms of th	e Perio	dic
Table and wh	y were	his idea	as accepted?					
7 What method would	you us	e to sep	parate each of the followin	g mixtu	res?			
a) water from a	solutio	n of sa	ılt in water					b)
,								•
						d)		
						•	•	
						e) calci	um carb	onate
from a mixture w	ith wate	er (CaCo	O ₃ is insoluble in water)					
Area	Strength	To develop	Area	Strength	To develop	Area	Strength	To develop
Done with care and thoroughness			Can use standard form			Understand term diatomic		

Good SPG		Can convert units		Why molecular substances have low mpt	
Can find PNE numbers in atoms		What happens when Na reacts with O ₂		Know & explain Group 7 reactivity trend	
Can find PNE numbers in ions		Write equation when Na reacts with O ₂		What happens in halogen displacements	
Find A _r from isotope data		Why ionic substances have high mpt		Why Mendeleev's ideas were accepted	
Can use sig figs		Know & explain Group 1 reactivity trend		Can give methods to separate mixtures	

www.CHEMSHEETS.co.uk 22-May-2018 Chemsheets GCSE 1085

GCSE REVISION 6

Formulae, equations, particles, structure & bonding

<u>1</u> W	Vrite the formula of the following ionic compounds.	
	a) sodium sulfate b) iron(III) oxide	
	d) aluminium nitrate	
<u>2</u> W	Vrite balanced equations for the following equations.	
	a) Na + O ₂ → Na ₂ Ob)	
	magnesium + nitric acid magnesium nitrate + hydrogen	

3 Complete the following table about some atoms and ions. The first row has been done for you.

٠.	·	g table about					,	
	Particle	Atom or ion	Atomic number	Mass number	Number of protons	Number of neutrons	Number of electron s	Electron structure
	F! !!"	ion	9	19	9	10	10	2,8
	Al!! !" !"							
		atom			19	20		
					16	18	18	

name	aluminiu m oxide	potassium	sulfur dioxide	graphite	buckmin ster - fullerene	helium	calcium bromide	sucrose
formula	Al ₂ O ₃	К	SO ₂	С	C ₆₀	He	CaBr ₂	C ₁₂ H ₂₂ O ₁₁
giant covalent								
ionic								
metallic								
molecular								
monatomic								
n is a molecula low boiling poir		containing (O ₂ molecule	es. Explain w	/hy oxygen h	nas a very	0=0	
electricity. Expl	e are both fo	orms of carb	oon. They bo	the structure	ry high melti	ng points b	ubstance.	
n dioxide (CO ₂₎ boiling point (- discussing stru	-78°C) while	silicon diox	kide has a v	very high m				-

4 What is the structure type of each of the following substances. Tick the correct box. aluminiu potassium sulfur

conduct and v		-	by discussing structure a melting point.	nd bond	ding, wh	y aluminium oxide must	be molte
	Strength	To	Area	Strength	То	Area	Strength
Done with care and thoroughness	Suengui	develop	Can find PNE numbers in atoms	Suengui	develop	Why giant covalent have high mpt	Suengui
Good SPG			Can find PNE numbers in ions				
Nrite formulae			Identify structure type from formula			Why giant covalent conduct or not Why ionic have high mpt	
Write balanced equations			Why molecular substance has low mpt			Why ionic conduct or not	
1	4			CSE		of the following ionic sulfive sulfive following ionic	ostarices
	7			CSE	E RE	VISION 7	ostances
a) potassium oxi	de			CSE alcu	E RE	VISION 7	
bromide			Ca	CSE alcu	E RE	evision 7	
bromide	f) ca	alcium r	d) magnesium e) ammonium iodide	hydroxi	E RE	evision 7	uminium
bromide	f) ca	alcium r	d) magnesium e) ammonium iodide	hydroxi	e RE	evision 7 ons b) alu	uminium sulfide
bromide 2 Calculate the relative a) chlorine, Cl ₂	e formula	alcium r	d) magnesium e) ammonium iodide nitrate	hydroxi	e RE	b) alu	uminium sulfide
bromide Calculate the relative a) chlorine, Cl ₂ ammonium sulfat	e formula	mass o	can be a magnesium of the following substance	hydroxi	de	EVISION 7 ons b) alu	uminium sulfide

b) Calculate the percentage atom economy to make titanium in this reaction.
4 Ammonia is made by reaction of nitrogen with hydrogen. N_2 + $3H_2 \rightarrow 2NH_3$
 a) Calculate the maximum mass of ammonia that could be formed from reaction of 12 g of hydrogen reacting we nitrogen.
b) In this reaction, only 15 g of ammonia was formed. Calculate the percentage yield.
Suggest two reasons why the yield was less than 100%.
1
© www.CHEMSHEETS.co.uk 23-May-2018 Chemsheets GCSE 1188 5 In an experiment, 4.0 g of calcium was reacted with 4.0 g of chlorine. One of the chemicals was in excess. Determ which is the limiting reagent and then calculate the mass of calcium chloride formed.
Ca + Cl ₂ → CaCl ₂
6 25.0 cm ³ of a solution of calcium hydroxide was titrated against a solution of 0.100 mol/dm ³ hydrochloric acid. 26. cm ³ of the hydrochloric acid was needed to neutralise the calcium hydroxide.
a) Describe how the titration is done.
b) Calculate the concentration of the calcium hydroxide in mol/dm 3 . The equation for the reaction is shown. 2H0 + Ca(OH) $_2$ \rightarrow CaCl $_2$ + 2H $_2$ O

.....

	c)
	,
Calculate the concentration of the calcium hydroxide in g/dm ³ .	

Area	Strength	To develop	Area	Strength	To develop	Area	Strength	To develop
Done with care and thoroughness			Can work out mass from moles			Work out moles for solutions		
Shows suitable working			Can work out % atom economy			Convert mol/dm³ to g/dm³		
Can write ionic formulae			Can work out % yield			Does not round too much		
Can work out M _r			Understands why yield < 100%			Can use sig figs		
Work out moles from mass			Understands limiting reagents			Gives units		
Use equation to find reacting moles			Can describe how to do a titration					

www.CHEMSHEETS.co.uk 23-May-2018 Chemsheets GCSE 1188

GCSE REVISION 8

Atomic structure, structure & bonding, formulae & equations

1 Complete the following table about some atoms and ions.

Particle	Atom or ion	Atomic number	Mass number	Number of protons	Number of neutrons	Number of electron s	Electron structure
Al!! !"							
iC _i							
P!! _{!"}							
				8	10	10	

2 The element indium consists of two isotopes, with 4.3% of the atoms are print and 95.7% of the atoms	are !"In !!"
a) What are isotopes?	

name	lithium oxide	argon	ammonia	silver(I) nitrate	buckminster	diamon
formula					fullerene	
IOITIIula						
giant covalent						
ionic						
metallic						
molecular						
monatomic						
the formula of th	e following ionic	substances.				
the formula of th			um nitrate		b) potassium sul	lfate
		c) aluminiu			b) potassium sul	lfate
) iron(III) oxide	d) barium hy	c) aluminiu				lfate
) iron(III) oxide	d) barium hy © www.CHE	c) aluminiudroxide	c 23-May-2018 Che	emsheets GCSE 119	90	
) iron(III) oxide	d) barium hy © www.CHE	c) aluminiudroxide	c 23-May-2018 Che	emsheets GCSE 119	90	
) iron(III) oxide	d) barium hy © www.CHE	c) aluminiudroxide	c 23-May-2018 Che	emsheets GCSE 119	90	
) iron(III) oxide	d) barium hy © www.CHE	c) aluminiudroxide	c 23-May-2018 Che	emsheets GCSE 119	90	
) iron(III) oxide	© www.CHE a high melting po	droxide	k 23-May-2018 Che ille water has a	emsheets GCSE 119 low melting point	90 (0°C). Explain th	nis differe

an ionic equation for this reaction. Explain clearly why this is a redox reaction. d) Nickel displaces copper in this reaction because it is more reactive than copper. Explain, in terms of electrons, why nickel is more reactive than copper. Direction of the care and throughness Code and Code a	an ionic equation							b) V	Vrite
Explain clearly why this is a redox reaction. d) Nickel displaces copper in this reaction because it is more reactive than copper. Explain, in terms of electrons, why nickel is more reactive than copper. Assa Steength To Base	an forme oquation	for this r	eaction						
electrons, why nickel is more reactive than copper.	Explain	clearly v	why this						
electrons, why nickel is more reactive than copper.									
electrons, why nickel is more reactive than copper.									
develop Can find A-from isotope abundance Why substances conduct or not Write half equations for displacement Identify structure type from name Write ionic equation for displacement Write ionic equation for displacement Write balanced equations Explain displacement in terms of redox Why substances have high/low mpts www.CHEMSHEETS.co.uk 23-May-2018 Chemsheets GCSE 1190 1 Give the formula of the following ionic substances.					ore react	ive thar	copper. Explain, in terms	s of	
Sood SPG Write formulae Write half equations for displacement Under the policy structure type from name Write ionic equation for displacement Under the policy structure type from name Write ionic equation for displacement Explain displacement in terms of redox Why substances have high/low mpts Www.CHEMSHEETS.co.uk 23-May-2018 Chemsheets GCSE 1190 1 Give the formula of the following ionic substances.	rea	Strength		Area	Strength		Area	Strength	1 dev
Can find PNE numbers in atoms Identify structure type from name Write ionic equation for displacement Write ionic equation for displacement Explain displacement in terms of redox Why substances have high/low mpts © www.CHEMSHEETS.co.uk 23-May-2018 Chemsheets GCSE 1190 1 Give the formula of the following ionic substances.	one with care and thoroughness			Can find A _r from isotope abundance			Why substances conduct or not		
© www.CHEMSHEETS.co.uk 23-May-2018 Chemsheets GCSE 1190 1 Give the formula of the following ionic substances.	ood SPG			Write formulae			Write half equations for displacement		
© www.CHEMSHEETS.co.uk 23-May-2018 Chemsheets GCSE 1190 1 Give the formula of the following ionic substances.	an find PNE numbers in atoms			Identify structure type from name			Write ionic equation for displacement		
© www.CHEMSHEETS.co.uk 23-May-2018 Chemsheets GCSE 1190 1 Give the formula of the following ionic substances.	an find PNE numbers in ions			Write balanced equations			Explain displacement in terms of redox		
1 Give the formula of the following ionic substances.	nows what isotopes are			Why substances have high/low mpts					
Calculations 2	an find PNE numbers in ions	©) www.Cł	Write balanced equations Why substances have high/low mpts HEMSHEETS.co.uk 23-May-2	ive the	formula E RE	Explain displacement in terms of redox GCSE 1190 of the following ionic sub:	stances.	

<u>8 Nickel reacts with copper(II)</u> sulfate to form copper: Ni + CuSO₄ \rightarrow NiSO₄ + Cu a) Write two

.....f) iron(II) oxide

b)
2
cium
alculate the
2
e volume of all

			n in a titration.		e equation			
a) Calculate the a	oncontr	ation of	$\label{eq:H3T + 3NaOH} H_3T + 3NaOH \rightarrow I$ the citric acid in mol/dm³.			vor to 2 cignificant figures		
a) Calculate the Co				Give yo	our arisv	ver to 3 significant figures	•	
c) Calculate the co your answer to			the citric acid in g/dm ³ . Th gures.	ne relati	ve form	ula mass of citric acid is 2	26. Give	Э
								_
Area	Strength	To develop	Area	Strength	To develop	Area	Strength	To develop
Done with care and thoroughness			Can work out mass from moles			Deduce molar reacting ratio from mass		
Shows suitable working			Can work out % atom economy			Work out moles for solutions		
			Can work out % yield			Convert mol/dm³ to g/dm³		
Can write ionic formulae						Does not round too much		
			Understands why yield < 100%					
Can work out <i>M</i> r			Understands why yield < 100% Work out gas volume from mass or mol			Can use sig figs		
Can write ionic formulae Can work out <i>Mr</i> Work out moles from mass Use equation to find reacting moles						Can use sig figs Gives units		

www.CHEMSHEETS.co.uk 23-May-2018 Chemsheets GCSE 1227

GCSE REVISION 10

Chemical Reactions 1

Complete w<u>ord</u> equations for each of the following reaction	s. Write <i>no reaction</i> if no reaction takes place. a) copper
+ oxygen →	b) hydrogen sulfide +
oxygen →	c) potassium + water →
	d) calcium carbonate + hydrochloric

	acid →				e) nicke	el oxide + nitrio
					f) magne	sium + sulfurio
					g) ammonia	+ hydrochlorid
•				h		
ssify es	ach of the following metal	s as having high /	medium / low	reactivity		
•	erc) iron			•	nesium	C
•	e) copper	•		<i>b)</i> ma	gricolarii	
nplete	the table about the follow	ring reactions by tio	cking the corre	ect boxes.		
	equation		trans	sfer of	type of	reaction
			protons	electrons	redox	acid-base
	Ca + 2HCl → CaCl ₂	+ H ₂				
	Fe ₂ O ₃ + 3C → 2Fe +	3CO				
	MgO + H ₂ SO ₄ → Mg	SO ₄ + H ₂ O				
	Zn + CuSO ₄ → ZnSC)4 + Cu				
omple	ete the table to show the p	oroducts of the elec	trolysis of the	e following comp	oounds.	
	compound	state	prod	luct at positive electrode		duct at negati ^o
	potassium bromide	molten				
		201120112				
	copper sulfate	aqueous				
	sodium iodide	aqueous				
			•			
) Write	e balanced half equations	for the following e	lectrolysis co	nversions.		
,	$u^{2+} \rightarrow Cu$ iv) F	,			ii) Cl ⁻ → Cl ₂	?
	IV) F	1 → □2				
	© www.0 ron nail is placed in copp n(II) sulfate.	CHEMSHEETS.co.uk 2 er(II) sulfate solution				orming copper
) Expl	ain why iron displaces co	pper in this reactio	n			

							!	c)
Write the simplest								
			what happens in this reac					d)
						ous solution of potassium o bromide (KBr) in the solu		(KI), a
•	•		•					
								Vrite a
balanced equation							5) •	VIIIC G
							(c)
			for this reaction				d) W	/rite
two Haii equations							e) E	xolain
							,	•
•••••								
Area	Strength	To develop	Area	Strength	To develop	Area	Strength	To develop
Done with care and thoroughness			Approx. reactivity of common metals			Write ionic equations for displacement		
Good SPG			Deduce if proton or electron transfer			Write half equations for displacement		
Write word equations for metal reactions			Write half equations			Explain displacement in terms of redox		
Write word equations for acid reactions			Understands why displacement occurs			Can explain halogen reactivity trend		

GCSE REVISION 11

Atomic structure, structure & bonding

1 Give the formula of each of the	following ions.
-----------------------------------	-----------------

ion	sodium	oxide	magnesium	nitrate	carbonate
formula					

ion	hydroxide	bromide	sulfide	aluminium	ammonium
formula					

<u>2</u> What is the structure type of each of the following substances? Tick the correct box. Also give the correct formula

Iomiula								
name	sodium sulfate	potassium	carbon dioxide	iodine	helium	diamond	buckmin ster - fullerene	aluminiu m oxide
formula								
giant covalent								
ionic								
metallic								
molecular								
monatomic								

3 Complete the following table about some atoms and ions. The first row has been done for you.

 <u> </u>	g table about					<i>y</i> = 0	
Particle	Atom or ion	Atomic number	Mass number	Number of protons	Number of neutrons	Number of electron s	Electron structure
!" Al !"							
S!! !" !"							

		17	20	17	
		12	12	10	

	is a molecular substance containing H ₂ O es. Explain why water has a low boiling point	
100°C).		
	Н	
	© WHITH CHEMCHEETS on the 22 May 2049 Champhoete COSE 4229	
5 Calciur	© www.CHEMSHEETS.co.uk 23-May-2018 Chemsheets GCSE 1228 um oxide has a very high melting point (2572°C), does not conduct electricity as solid but of	loes when molten
	Explain these properties.	ides when mollen.
'	Explain those properties.	
	is an alloy of iron. Steel is harder than pure iron, which is soft. Explain what an alloy is, wh why steel is harder.	y pure iron is soft and
	w much greater is the surface area to volume ratio of a cube with 2 cm sides compared to Show full working.	one with 10 cm sides?
		υ Ελριαιί
why r	nanoparticles of gold have different properties to bulk gold.	

Area	Strength	To develop	Area	Strength	To develop	Area	Strength	To develop
Done with care and thoroughness			Can find PNE numbers in ions			Know what an alloy is		
Good SPG			Can find PNE numbers in atoms			Why alloys are softer than pure metals		
Knows formula and charge of ions			Why molecular substance has low mpt			Calculate surface area : volume ratio		
Identify structure type from formula			Why ionicr substance has high mpt			Explain different nanoparticle properties		
Write formulae			Explain conductivity of substances					

© www.CHEMSHEETS.co.uk 23-May-2018 Chemsheets GCSE 1228